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An Efficient Solution of the Congruence 
x2 + ky2 = m( mod n) 
JOHN M. POLLARD AND CLAUS P. SCHNORR 

A/~sstract -The equation of the title arose in the proposed signature 
scheme of Ong-Schnorr-Shamir. Tbe large integers n, k and m are 
given and we are asked to find any solution x, y. It was believed that this 
task was of similar difficulty to that of factoring the modulus n; we show 
that, on the contrary, a solution can easify be found if k and m are 
relatively prime to n. Under the assumption of the generalized Riemann 
hypothesis, a solution can be found by a probabilistic algorithm in 
O(log n)‘llogloglkj 1) arithmetical steps on O(log n)-bit integers. The al- 
gorithm can be extended to solve the equation X2 + KY* = M(mod n) for 
quadratic integers K, ME I![&?] and to solve in integers the equation 
x3 + ky’ + k*z’ - 3kxyz = m(mod n). 

I. INTRODUCTION 

T HE CONCEPT of digital signature was proposed by 
Diffie and Hellman [5], together with that of public-key 

cryptosystem. The Rivest-Shamir-Adleman (RSA) method 
[15] is generally considered best for both uses. Research by 
Ong, Schnorr, and Shamir [12] led to a new method for 
signatures which seemed to be much easier to implement. 
In the system [12], the public key consists of two integers n 
and k. The modulus n is a large odd composite number 
(say, 1000 bits), whose factorization is kept secret; k is in 
general of similar size to n. A valid signature of the 
message m, where 0 < m < n, is any pair of integers x, y 
with 

x2 + ky2 = m(modn). (1) 
It has been shown that general solutions of (1) can easily 
be generated when a square root u =J-i/k(modn) is 
given as private key. For any integer r, with r relatively 
prime to n, put x = (m/r + r)/2(modn) and y = 
(m/r - r)u/2(mod n). Unlike the RSA method, there are 
many possible signatures for any message. 

We give a probabilistic algorithm to solve (1) without 
knowing the factorization of n, which terminates in 
O((log n)2]loglog Ikl 1) arithmetical operations on O(log n)- 
bit numbers provided that k and m are relatively prime to 
n. This time bound holds under the assumption of the 
generalized Riemann hypothesis. The algorithm breaks the 
Ong-Schnorr-Shamir signature scheme. 
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For a natural number n let Z, = Z/niZ be the ring of 
integers modulo n, and let Zz be the multiplicative group 
of integers modulo n which are relatively prime to n. For 
an odd prime p and integer k let (k/p) be the Legendre 
symbol. For integers a, b the greatest common divisor of 
a, b is denoted (a, b). 

For a prime power n = p’ it is known that x2 + ky2 = 
m(modp’) is solvable for all k, m E Zp*‘, and we can find 
a solution in random polynomial time (i.e. using some 
random bits we can find in polynomial time integers which 
solve the equation with probability at least l/2). The 
restriction that the integers k, m be relatively prime to p is 
necessary. For instance, x2 = m(mod p’) is solvable iff m 
is a square mod p’. Since the order of the group Z;< is 
p’-‘( p - l), we can compute square roots modulo p’ in 
random polynomial time using a probabilistic version of 
well-known square root algorithms (see, e.g., Rabin [14], 
Adleman et al. [l]). Given a square a(mod p’), these 
algorithms find k &(modp’) with probability >1/2 
within O(e logp) arithmetical operations modulo p’. To 
solve (1) we pick a random y E Z,, and apply the square 
root algorithm to a := m - ky2(mod p”). With probability 
at least l/2, u(mod p’) is square, and yields a solution 
x := &(mod p’), y. 

Suppose the prime factors of n = ll;=,plf~ are known. 
By the Chinese remainder theorem, (1) is solvable iff there 
exist integers xi, yi with x2 + kyf = m(modp,“) for i = 
1;. .) r. Therefore, given the prime factors of n, (1) can be 
solved probabilistically in O(log n) arithmetical operations 
on O(logn)-bit integers using the Chinese remainder 
construction and the square root algorithm. 

We outline the solution of (1) in Section II and describe 
the main step along with some alternatives in Section III. 
Section IV deals with exceptional cases. The time analysis 
is given in Section V. Section VI gives a solution of (1) via 
lattice basis reduction. In Section VII we discuss con- 
nections with the theory of Legendre’s equation. In Section 
VIII we reduce the problem of solving, in quadratic inte- 
gers X, Y E Z[fi], the equation X2 + KY2 = M(mod n) to 
the problem of solving (1). In Section IX we outline a 
solution of the equation x3 + ky3 + k2z3 - 3kxyz = 
m(mod n). 

Some related work has been stimulated by an early 
circulating draft of the main algorithm. J. Shallit [16] gave 
an exposition of Pollard’s algorithm along with a prelimi- 
nary analysis. Estes et al. [6] independently of this paper 
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extended the algorithm to quadratic integers. They also 
announced a version of the algorithm that does not rely on 
the assumption of the generalized Riemann hypothesis [2]. 

II. OUTLINE OF ALGORITHM 

The new algorithm for solving (1) does not require 
knowledge of the prime factors of n. It is based on the 
well-known identity 

where 

xf + ky,2( x2’ + ky,2) = x2 + kY2 (2) 

x=x,x, f4+.Y2, y= Xl.J$ T X2YI, (3) 
and solves (1) for k, m E Z,*. It was mentioned in [12] that 
we can interchange k and m; changing to new variables 
x’ = x/y, y’ = l/y(mod n), we have x’~ - my’2 = 
- k(mod n). Our additional idea is that m can be replaced 
by a smaller number m’ without affecting the difficulty of 
solving (1). Then we have the following algorithm that 
solves (1) for k, m E Zz. 

1) If n is a pure prime power then solve (1) by comput- 
ing square roots in Z,*. 

2) Replace m by an equivalent m’ such that 0 < m’ 
I dm in case k > 0, and 0 -C Irn’l I m in case 
k < 0. 

3) If m’ is a perfect square, or m’ = k, solve x2 + ky2 = 
m’(mod n) with y = 0 or x = 0, and go to step 5). 

4) Apply the algorithm recursively to solve Y2 - m’y’2 
= - k(mod n) such that (y’, n) =l. Solve x2 + ky2 
= m’(mod n) with x := x’/y’, y := l/y’(mod n). 

5) Work back to a solution of the original equation. 

Steps 2) and 4) reduce (k, m) to (- m’, - k), which 
halves the number of bits of ] kl. By 0( lloglog Jkl 1) reduc- 
tion steps the original pair (k, m) can be reduced to one of 
the pairs (l,l), (-l,l), or (-1, -1) (the pair (1, -1) is 
reduced in step 2) to (1,l)) for which the equation is solved 
directly in step 3). The reduction may terminate in step 3) 
before reaching (1,l) or (- 1,l) or (- 1, - 1). 

III. THE MAIN STEP 

We explain step 2) in more detail. We show how to find 
m’ such that 

O<rn’Idm, in case k > 0 

0 < Im’l I fl, incase k<O, (44 

and from a solution of 

x2+ky2=m’(modn) ( w 
it is easy to obtain a solution of (1). 

Our first goal is to transform m into a prime m, with 
(- k/m,) = 1, and to solve xi = - k(mod mo). For this 
we repeatedly pick random U, u(mod n) with u2 + ku2 E 
Z,*, form m, := m( u2 + ku2)(mod n), and try to solve 

xi = - k(mod m,) (5) 

using a probabilistic square root algorithm that finds x0 
with probability >1/2 provided m, is prime. If the 
generalized Riemann hypothesis (GRH) holds, we need to 
try at most O(log n) pairs U, u on average in order to find 
a prime m0 and x0. We do not certify primality of m, but 
verify (5) instead. When m,, x,,, u, and u are known it 
remains to solve x’~ + ky” = m,(mod n). Then x”, y” can 
be combined with U, u via (2), (3) to give a solution x, y of 
(1) with right-hand side mi/m(modn), and thus x := 
x”m/m,, y := y”m/m,(mod n) solves (1). 

Next we define integers m,, x1, m2, x2; * ., xIpl, m, = 
m’ by 

xg+k=moml 
xi = min ( x0 mod m,, m, - (x0 mod m,)) 

xf + k = mimi+l 

X r+1= min(ximodmi+l,mi+l-(ximodm,+,)) 

xiel + k = m,_,m,. (6) 
We continue this iteration until we reach i = I with 

xIpl I m, s m,-,, if k > 0 

hl IdiT, if k<O. (7) 
Eventually we obtain a number m’ = m, with the required 
properties (4a), (4b). To see this we consider separately the 
cases k > 0 and k < 0. We assume that (m,, n) =1 for 
i=O,... , I and discuss the case (mi, n) # 1 in Section IV. 

For property (4a): If k > 0, then the numbers 
ml, m2,. ’ - are all positive. The iteration (6) is the Gaus- 
sian algorithm for reducing the quadratic form 

[;I’[ 2mx$sl = m0x2 +2x,xy + m,y2. 

This algorithm yields an integer 2 X2-matrix T with det T 
= 1 so that 

and m, < ,/m; the latter follows easily from (6), (7). 
The iteration (6) takes no more than O(log]x,]) steps (see 
Lagarias [7]). 

If k < 0, then negative m, are possible. If m,, mitl > 0, 
then 

mi+l = +(x2 - lkl) < imj. 
I 

Therefore there exists j = O(logn) such that mj+l < 0 for 
the first time. Suppose that mj+l -C 0 (see Section IV for 
the case mjhl 
> m, then 

= 0). Now we have ]xjj2 < Ikl. So if lmjl 

lmj+ll s  IW/lm,I 5 & @  
This shows 1 I j + 1. 
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To demonstrate property (4b), we multiply the equations 

xf + k = m imi+l, for i=O,l;..,I-1 

together, using the identity (2) (3). So we obtain integers 
s,t with 

s2 + kt2 = m ,,(m lm2.. . m I-1)2mf, (8) 

or writing U = s/M, V = t/M , M  = m Im2 * * . m ,(mod n), 
U2 + kV2 = m ,/m ,(mod n). 

This again requires that (m ;, n) = 1 for i = 1,. . -, 1. 
(9) 

Now if a solution of (4) was known, we could similarly 
multiply (4) and (9), and so solve (1). This multiplication 
will be part of step 4); we conclude step 2) by storing the 
values of U and V. 

Remarks 

a) The recursion (6) was suggested by the proof of 
Fermat’s two-square theorem (e.g., Davenport [4, Ch. 51; 
see also Uspensky and Heaslet [17, pp. 325-3461): to 
express a prime p = 4k + 1 as p =x2 + y2 first express 
some multiple mp (m < p) in that form, then reduce m , 
eventually to 1. The same proof suggests another deduction 
from (6). By careful choice of sign in (3), s and t in (8) are 
divisible by M ’:= m , . . . m ,-,, and so for U := s/M’, V:= 
t/M ’ we have 

U2 + kV2 = mom,. 

We return to this later. 
(10) 

b) We can alternatively find m , as a prime of the form 
m , = m  + vn with ( - k/ma) = 1. Presumably such v exists 
with v = O(log n) but we cannot prove this bound. This 
way to find m , seems to be more efficient in practice. 

c) Instead of computing m ,, x0 using a probabilistic 
square root algorithm, we can take m . = 3(mod4) and test 
x0:=(-k) (mo+1)‘4(mod m ,,) for xi = - k(mod mo). The 
latter equation is satisfied whenever m , is prime and 
(- k/m,) = 1. This method fails if k = j2 since (- k/m,) 
= - 1 for all primes m , = 3(mod4). So instead we take 
m , = S(mod8) and test x0 := j-2(“o-1)/4(mod mo). This 
implies x0” = - k(mod m ,,) whenever m , is prime (see [9]). 

IV. OCCURRENCE OF NONINVERTIBLE ELEMENTS 

Some integers occurring in steps 2) and 4) of the 
algorithm must be relatively prime to n since their inverse 
(mod n) is used. These integers are M  = m1m2 . . . m , in 
step 2) and y’ in step 4) where we transform the solution 
x’, y’ of x’2 - mryr2 = - k(mod n) into y :=1/y’, x := 
x’/y’(mod n). We discuss separately the cases (M, n) # 1 
and (y’, n) # 1. We assume that n is not a prime power 
since in this case we solve (1) by taking square roots in Z ,*, 
as is explained in the introduction. 

Suppose (M, n) # 1. We cannot have n Imi since then 
m , = 0 and - k is a perfect square, - k = j2, and thus the 
previous step 3) would stop with m ’ = j2 (and initially 
k > 0). If ( m i, n) # 1, n t m i, we obtain a factorization of n 

into relatively prime factors n,, v = 1,2 . . . . We continue 
to solve (1) separately for each modulus n,, and we 
combine the solutions by the Chinese remainder 
construction. We may have nvlmi and thus x2 = 
- k(mod n,). In this case we solve x2 - Y’~ = 
m ’(mod n,) by Lemma 1 below. This yields a solution 
y = y’/x,(mod n,) of x2 + ky2 = m ’(mod n,) which can be 
retraced to a solution of the original equation with modu- 
lus n,. Here we need (k, n,) = 1 for the inversion of xi, 
and 2 t (m’, n,) for the application of Lemma 1. 

Now suppose (y’, n) # 1 in step 4) with x’~ - m ’y’2 = 
- k(mod n). If n t y’ we obtain a factorization of n into 
relatively prime factors n,, v = l/2 * . . . We continue to 
solve (1) separately for each modulus n Y. If however n] y’ 
then xf2 = - k(mod n). In this case we solve x2 - Y”~ = 
m ’(mod n) by Lemma 1 below. This yields a solution 
x, y := y”/x’(mod n) of x2 + ky2 = m ’(mod n) that is 
needed in step 3). This step requires (k, n) = 1 in order to 
invert x’, and 2 t (m’, n) for the application of Lemma 1. 

We finally verify that after eliminating the case (M, n) 
# 1 in the described way, the current values for k and m  
remain relatively prime to n throughout the algorithm. The 
initial values k, m  have this property. The only changes on 
k, m  occur when k, m ’ are reduced to - m ’, - k in step 4) 
and when, at the end of step 2), m ’ = m , is chosen for the 
new m . We have explained above that the algorithm 
continues with m ’ only if (m’, n) = 1. 

Lemma 1: If either n or m  are odd the equation x2 - 
y2=m(modn)canbesolvedas(r+1/2)2-(r-1/2)2= 
m(mod n) with r = m , or r = m  + n, whichever is odd. 

Remark: The condition “n or m  odd” cannot be re- 
moved. The equation x2 - y2 = 2(mod 4) is unsolvable 
since x2, y2 are either 0 or l(mod4). It follows that 
x2 - y2 = m(mod2’) is unsolvable for e 2 2 and m  = 
2(mod4); it can easily be solved in all other cases. It 
follows from the Chinese remainder theorem that x2 - y2 
= m(mod n) is solvable iff either’4 t m  - 2 or 4 t n. 

V. ESTIMATION OF THE RUNNING TIME 

We first bound E(n), the expected number of random 
pairs u, u E Z, that are tested in step 2) until m , := m(u2 
+ ku2)(mod n) is prime and (- k/ma) =l. For m  E Z,*, 
u2 + ku*(modn) and m . are uniformly distributed over 
Zz. Therefore, E(n) = O(n/r-,(n)) where rPk(n) = 
#{primes p I n with (- k/p) = l}. We know from the 
effective version of the Chebotarev density theorem (see 
Lagarias and Odlyzko [8, theorem 11) that if the general- 
ized Riemann hypothesis (GRH) holds for the zeta function 
of Q(m), then for all n, 

where c is an effectively computable constant, Li(n) = 
/; dx/log x, and log is the natural logarithm. 

If GRH holds then on the average there is at least one 
prime m . with (- k/m,) = 1 for @ log n) random pairs 



u, u. For such a prime rno the probabilistic square root 
algorithm finds x0 = f fi(mod m,) with probability 

If k > 0, the minimum is given by a shortest nonzero 
vector (in Euclidean length) (u, &u) of the lattice 

2 l/2 within O(logn) arithmetical operations over ZmO. 
Thus the expected number of arithmetical steps for finding L= {(u,fiu)lx,p=z4(modm,)} 

x0, m0 is at most O(logn)2. This dominates the O(logn) with determinant d(L) =&Jm,/gcd(x,, ml)l. By a well- 
steps for the iteration (6) and for computing the known result u2 + ku2 < fllm,(. This gives a solution 
inverse(mod n). Each repetition of steps 2), 3) 4) of the u, u, m’ E Z of the equation 
algorithm halves the number of bits of Ikj. Therefore steps 
2), 3) 4) are repeated at most O(]loglog(k] 1) times. u2 + ku2 = m,m’, O<m’< 
Thus the algorithm takes an expected number of 
O((log n)2]loglog Ikl 1) arithmetical operations on O(log n)- 
bit integers. If the algorithm splits the modulus n into 

If k < 0, a shortest nonzero vector of the lattice 

relatively prime factors n,, v = 1,2,. . . , we count a se- L= {(u,~u)/xOu=U(modm,)} 
quence of operations on O(log n,)-bit integers for v = 
1,2, * . * as one operation on an 0(X, log n,)-bit integer. 

satisfies u2 + lklu2 I dmlrn,l and gives a solution of 
the equation 

Theorem 2: Suppose GRH holds. Then, upon input k, 
m and n with (km, n) = 1, the proposed probabilistic u2 + ku2 = m,m’, Im’( 5 
algorithm solves x2 + ky2 = m(mod n) with an expected 
number of O((log n)2]loglog Ik( 1) arithmetical operations From a reduced basis b,, b, of the lattice L we even obtain 
on O(log n)-bit numbers. integers u, u such that ]u2 + ku2\ _< Irn,lfl, and thus we 

achieve the bound lm’l < m. It is sufficient to try all 
Remarks: a) The condition k, m E Z ,* is necessary since 

the algorithm does not solve the equations x2 = m(mod n), 
vectors u + fi u in {b,, b,, b, + b,, b, - b,}. To prove the 
claim we consider the lattice 

x2 + ky2 = O(mod n), x2 - y2 = 2(mod4). Solving the 
equation x2 = m(mod n) for arbitrary m E Zz is as hard z= {(u,u):x,u=u(modm,)} 

as factoring n; the equation x2 - y2 = 2(mod4) is un- with determinant d(t) = (m,/gcd (x0, ml)l. By 
solvable. Minkowski’s convex body theorem (e.g., Cassels [3, 

b) It can easily be seen that an arbitrary nonlinear Ch. III, 2.21) there is a nonzero lattice point in the rhom- 
quadratic equation bus 

ax2+bxy+cy2+dx+ey+f=O(modn), R: Iu+~u~+Iu-~ul~2(~rn,l~)’ 
with a, b, c, d, e, f E Z, can be reduced in O(1) arithmeti- 
cal steps to either an equation of type (1) or to an equation 

of volume V(R) = 4m,. By the arithmetic-geometric mean 

that is linear in one variable-and thus can easily be 
inequality one gets ]u2 + ku2) I Irn,lm which solves the 

solved, or to an equation of type x2 = k(mod n). Therefore 
equation 

the algorithm for solving (1) solves arbitrary nonlinear u2 t ku2 = m,m’, lm’l dir 
quadratic equations mod n in two variables provided that 
the equation is not equivalent to x2 = k(mod n) for 

Now the claim holds since the vectors ? b,, * b,, + (b, + 

some k. 
b2), f (b, - b,) exhaust all points of the lattice L in the 
rhombus R. 

VI. CONNECTIONS WITH LATTICE BASIS REDUCTION 
In any case, the equations 

The iteration (6) of the main step can be done in a 
x~+k=mlm’ u2 + ku2 = mlm’ 

somewhat more direct way by reducing an appropriate serve the same purpose as all the equations in (6). We can 
lattice basis of dimension 2 by either the Gaussian or the find u, u, m’ by reducing the basis 
LovQsz reduction algorithm [lo]. This has independently 
been observed by J. Shallit [16]. (xo~~)h+4 

When given x0, m,,m, such that x$+ k=m,m,, we of the lattice L. A reduced basis B = {b,, b2} can be 
can alternatively find m’ = m, by minimizing the binary found by the Gaussian reduction algorithm within O(log n) 
quadratic form arithmetical operations on O(log n)-bit integers. 

f(u,w)=(xOu+wmJ2+ku2 

over integers (u,w) E h2 -(O,O). We have f(u, w) = 
O(mod m,) for all u, w in Z, and thus we take ml:= 
f ( u, w )/ml. Minimizing f is equivalent to minimizing the 
form 

u2 + kv2 
over the lattice {(u, u) E H 2: xeu = u(mod ml)}. 

VII. CONNECTIONS WITH LEGENDRE’S EQUATION 

The following is given by Mordell [ll, p. 1641. 

Theorem 3: If the congruence 

ak2+b=O(modm) 
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is solvable, integers x, y, not both zero, exist such that 

ax2 + by2 = Mm 
for some integer M with M < 2Jab if a > 0, b > 0, and 
IMI <m if ab<O. 

We can add “given b, m and k, we can find M, x and y 
in polynomial time.” For a = 1 we have shown this in (10) 
above. For a # 1 the claim follows from the equation 
(ak)2 + ab = O(mod am) by applying the case a = 1. 
Alternatively we can find M, x and y, following the 
method of Section VI, by minimizing the quadratic form 
f(u, u) = a2(uk + um1)2 + abu2, where m, is defined by 
ak2 + b = mm,. 

Another solution of (1) is possible from the theory, due 
to Legendre, of the equation 

ax2 + by2 + cz2 = 0 
(see Mordell [ll, Ch. 71). In outline this is rather simple: 

1) transform k and m into equivalent odd primes k’ 
and m’ with (m’jk’) = ( - k’/m’) = 1; 

2) solve in integers the equation x2 + k’y2 = m’z2; 
3) deduce the solution x’ = x/z, y’ = y/z(mod n) of 

(1). 
For an efficient transformation from k, m to k’, m’ in 

step 1) we can use the methods of the previous algorithm 
but we cannot rigorously analyze this step. Then following 
Cassels [3, Ch. III, 7.41 we can solve the equation of step 2) 
in probabilistic polynomial time. We first find square roots 

a = -(mod m’) b=&?(modk’). 
All points of the lattice 

L= (x,y,z) EZ3: 
i 

x = ya (mod m’), x = zb (mod k’) 
x = y(mod2), z = O(mod2) i 

satisfy x2 + k’y2 - m’z2 = Omod(4k’m’). The lattice has 
determinant d(L) = 4lk’m’l. By Minkowski’s convex body 
theorem (see, e.g., Cassels [3, Ch. III, 2.2]), there is a 
nonzero lattice point in the ellipsoid 

E: x2 + lk’ly2 + lm’lz2 < 4lk’m’l 
of volume V(E) = ( ?r/3)251k’m’l > 23d( L). This lattice 
point must satisfy x2 + k’y2 - m’z2 = 0. We can find this 
lattice point by reducing a basis of lattice L. 

Comparing with the algorithm of Section II we see that 
the new algorithm requires a more subtle initial transfor- 
mation of k, m; then the whole recursion of the previous 
algorithm simplifies to reducing an appropriate lattice 
basis of some lattice L with algebraic coefficients contained 
in R3. 

VIII. SOLUTION 6~ X2 + KZ2 = M(mod n) FOR 
QUADRATIC INTEGERS 

It has been asked in Ong, Schnorr, and Shamir [13] 
whether (1) can be solved efficiently for quadratic integers 
since otherwise this yields a very efficient public signature 

scheme. We extend the previous algorithm to the general- 
ized equation. 

For integers d, n we consider the ring Z,[fi] := 
iZ[o]/nZ[&?]. An element of a + ba E Z[@] is inuert- 
ible modulo nZ[&?] iff a2 - db2, the norm of a + bQ, is 
relatively prime to n. Let Z,[@]* be the subgroup of 
Z,[&?] consisting of the invertible elements. We will ab- 
breviate mod(nZ[@]) as mod n. 

For given elements K, M in Z[fi] that are invertible 
mod n, we wish to solve the equation 

X2 + KY2 = M(mod n) t-11) 
with X, Y in Z[fi]. Let M= m, + rn,a and K = k, + 
k2fi. 

Outline of the Algorithm 

1) If n = p’ is a prime power we solve (11) directly by 
taking square roots in Z,,[fi]*. 

2) Either split n or reduce (11) to the case that m2 E nZ, 
m,E Z!,*. 

3) Either split n or reduce (11) to the case that k,, m2 
E nZ, k,, m, E Zz. 

4) Solve x2 + k,y2 = m,(mod n) with x, y E Z by the 
algorithm of Section II. 

5) Work back to a solution of the original equation. 

We explain the steps in more detail. 
Step 1: Pick a random Y in B,,[fi]. Then the element 

M - KY2(mod p’) is, with probability at least l/2, a 
square. If so, we can find a square root in probabilistic 
polynomial time since we are given the order of the group 
Zpe[@]*, which is p2’ -1 in case (d/p) = -1 and p2’ - 
p’ in case (d/p) = 1. 

Step 2: Let M-l = m, + fi,fl(mod n). We assume that 
the numbers Z,, Fi,k, + Z,k, are either in nZ or in Zz; 
otherwise we split n. In particular we can assume that 
G, E Zz. We find X, Y E Z[a] and an integer m that is 
not in nZ such that 

X2+ KY2=Mm(modn). (14 
This either reduces (11) to the equation X’2 + KY’2 = 
m(mod n), or splits n in case m @ iZ,*. Equation (12) can 
be written as a quadratic equation for the integer coor- 
dinates of X = x1 + 0x2, Y = y, + fiy2: 

f (yl, ~2) := (=A + %k,)(d + 4;) 

+‘Lwd~,k, + fi,k,) 

= m,(x, + m,/m,x2)2 

+ Fz,(d - mf/Z,)xg(modn). (13) 
If KM-‘(mod n) is a rational integer we solve (12) with 

X= 0, Y = M. In all other cases we have @,k, + Z,k, E 
Z ,*, and thus we can choose y,, y2 such that f(y,, y2) E 
Z ,*. Then if d - Zi/Z 2 E Z ,*, we can solve the remaining 
equation in x1, x2’ by the algorithm of Section II. If 
d = Z&Gi,(modn) we solve (13) with y1 = y2 = 0 and 
x1 = - x,Z,/m,(modn); we can choose x2 such that 
m’ G nZ. 
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Step 3: Since the equation X2 + KY2 = m(modn) is 
equivalent to ( X/Y)2 - mYP2 = - K(mod n) we apply 
step 2) to the latter equation. 

Steps 4 and 5 are straightforward. If we split 12 we can 
split n into relatively prime factors n,, v =1,2, . . . . In this 
case we solve (11) separately for each modulus n,, and we 
combine the solution by the Chinese remainder 
construction. 

So far we have reduced (11) to (l), and thus we can 
enunciate the following theorem. 

Theorem 4: Suppose that GRH holds. For K, M in 
E[o] with K, M invertible modulo nZ[fi], we can solve 
(11) probabilistically using an expected number of 
O((log n)* loglogn) arithmetical operations on O(log n)-bit 
integers. 

IX. SOLUTION OF THE EQUATION 
x3 + ky3 + k2z3 - 3kxyz = m(mod n). 

If the above equation was difficult to solve for given 
k, m and n it would give an efficient signature scheme. It 
has been observed by Ong, Schnorr, and Shamir that there 
is an easy solution of the equation when given integers u 
and w satisfying 

u3 = k(mod PZ) w3 =l(mod n) 

1+w+w2=O(modn). 
By the discrete Fourier transform 

we have 

of the number x +{uy + c2u2z in the cubic field Q(c) 
where l E [w is a primitive cube root of unity. Therefore we 
can compose solutions x,, y,, zi of g(k, xi, yi, zi) = m, for 
i =1,2 to a solution x, y, z of g(k,x, y, z) = m1m2 by 
writing 

x = x1x2 + k(YlZ2 + YA) 
Y = XlY2 + X2Yl 

z  = XlZ2 + z1x2 + y,y,. 

These equations in (17) are equivalent to 

x + [uy + klutz 

(17) 

= (x1 + Puy, + 12V2Zi)( x* + suy2 + 52U2zJ. 
Note that we can also compose a solution of g(k, x, y, z) 
= m,/m,(mod n) provided that (m,, n) =l. 

In order to solve (15) it is sufficient to find integers 
a, b, c, d that solve the equation 

a3 + kb3 
c3 + kd3 

= m(modn). (18) 
This gives a solution 

For these integers x, y, z one can easily verify the equation 

a + ubl 
~ =x + z&y + u2pz. 
c+udc 

Thus by (16) these integers solve (15). 
Conversely, given integers x, y, z that solve (15) we can 

solve (18) with 

= & = 3s,s,s,. 
c=- Y> d=z, b = xy - y*, a = kz2 - xy. 

By the above transformations we can also compose 
solutions of (18) with right-hand sides m, and m2 to 

To solve the equation solutions with right-hand sides m1m2 and m,/m,(mod n). 

g( k, x, y, z) := x3 + ky3 + k2z3 -3kxyz = m(mod n) In (18) we can replace the pair (k, m) by (- m, - k) 

(15) 
since (18) is equivalent to the equation 

we first find integers x1,x2, x3 such that x1x2x3 = a3-mc3 

m(mod n). Then we invert the transformation (14) b3 - md3 
= - k(modn). 

The same replacement is possible for (15). 

Now we can outline a solution of (15) (or (18)) which is 
similar to the previous solution of (1). 

and put (x, y, z) := (si, s2uP1, s,u-*)(mod n). 
If (15) was difficult to solve without knowing u then we 

could use this equation for verifying a signature (x, y, z) 
for the message m. We could use the private key u for 
signature generation and the public key k for signature 
verification. 

1) 

2) 
3) 

We show, however, that there is an easy solution for 
(15). The quadratic form g(k, x, y, z) is the norm, 

4) 

g(k x, Y, z> = N(x + BUY + S2u2z>, (16) 5) 

If n is a pure prime power then solve the equation by 
computing cube roots modulo n. 
Replace m by an equivalent m’ such that lrn’l I lkj/2. 
If either m’ is a perfect cube or m’ = k, solve the 
equation g(k, x, y, z) = m’(mod n) with z = 0 and 
either y = 0 or x = 0. 
Apply the algorithm recursively to solve g( - m’, x, 
y, z) = - k(mod n). 
Work back to a solution of the original equation. 
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The main step, step 2), needs further explanation. We 
can first transform m  into an equivalent prime m ,; e.g., 
we test for primality: either m , = m  + vn for small integers 
v, or m , = mt 3(mod n) for random t in iZ,*. By computing 
a cube root of k(mod m ,) we find integers x0, y,, m , such 
that 

xi + kyz = mom,. 

Next we generate integers xi, yi,mi+l for i=l;..,I-1 
such that 

x3 + kyl = m imi+l (19) 
and lrn I] I ] kj/2. From these integers and from a solution 
x’, y’, z’ of g(k, x’, y’, z’) = m ,(mod n) we can compose a 
solution x, y, z of g(k, x, y, z) = m ,(mod n). 

When given xi-i, yi-i, m i, we find m i+l with Imi+ll 
I (27/23)lj4m by m inimizing in absolute value the 
binary cubic form 

f(u, w) = (uw,-~+ wm,)3+ u3k (20) 

over the pairs of integers (u, w) in Z * - (0,O). We have 
f( II, w) = O(mod m i) f or all integers u, w. Since the form f 
has negative discriminant A = - 27k * ] m  i ] 6 one can reduce 
f by an algorithm that is similar to the reduction of 
positive definite forms, i.e. to lattice basis reduction (see 
Cassels [3, Ch. II, 5.1 and 5.41). From the reduced form 
one obtains integers u, w such that 

(see Cassels [3, Ch. II, 5.4, Theorem IX]). This yields 

lmi+ll I l.f(U, W> I/lmil I ( ~)“4JVFJ. 

By repeating this process O(log n) times we find integers 
x~-~, Y~-~, m l such that 

x;-~ + kyj-, = m IelmI, with Irn,l I 
$ ; PI. 

In order to obtain lmIl I Jkl/2 we repeat the iteration (19) 
several times starting with randomized values m t3(mod n) 
instead of m . 

Time analysis: Steps 3) and 4) are passed at most 
O(log n) times during the recursion. The length I of the 
iteration (19) is at most O(loglog lkl). Suppose for simplic- 
ity that 3 does not divide q(n), the order of the group Zz. 
Then t + m t3(mod n) is a l-l transformation of Z  ,*, and 
in step 2) we can transform m  into an equivalent prime m , 
in random polynomial time by checking whether m . = 
m t 3(mod n) is prime for about O(log n) random values t 
in Z  ,*. We cannot rigorously prove that a few randomized 
initial values for m  will decrease the final value of ] m  II at 
the end of step 2) by about a factor of 2 beyond the bound 
,/m lkl. 

Modulo this assumption, the algorithm, upon input k, 
m  and n with (km, n) =l, solves (15) with an expected 

number of O((log n) * log log ] k I) arithmetical operations on 
O(log n)-bit integers. 

Remarks 

a) M inimizing the cubic form (20) over integers u, w is 
equivalent to m inimizing the form 

u3 + ku3 
over the lattice {(u, u) E Z *: xiA1u = u(mod m ,)}. For this 
we reduce the basis (xi-i, Ik11/3mi),(mi,0) of the lattice 

L = {(u, Ik11/3u)Ix,-,u = u(mod m j)} 

with determinant d(L) E Im,l ]k]1/3/gcd(xi-l, m ,). Every 
nonzero vector u + ] k1113u of this lattice which is shortest 
inthenormu3 + ]k]u3satisfiesu3 + lklu3 I (4/m)Imi11.5~, 
since the convex set 

C: u3 + lklu3 5 ilrnJ”m  

has volume V(C) > 4d( L). This yields U, v, m i+l such that 

u3 + ku3 = m ,mi+l, Imi+lJ 2 $hGL 

and we finally obtain Jm,J I (4/m)*lkl. The constant 4/77 
can be decreased to (27/23)‘/4 by trying several of the 
short vectors in L. 

b) There is another way to decrease m ’ = m I beyond the 
bound lm’l I dm(kl in step 2). We solve in advance all 
equations 

g(P;,x,Y,z)=pj(modn) (21) 

where the integers pi, pj are either - 1 or a prime less than 
50. If the integer m ’ = m ,, obtained in step 2), has a prime 
factor p less than 50, we can take m ’/p for the new m ’ 
and we solve directly the equation 

g(k,x,y,z) =p(modn). (24 
We replace (k, p) by (- p, - k) and, following step 2) of 
the algorithm, we reduce (22) to an equation 

g(-p,x,y,z)=E(modn) 

with ]tti] I dmp < 51. Since Zz completely factors over 
primes less than 50 we can solve (22) by composing 
solutions of (21). 

To solve (21) we pick for each of the 16 primes p = pi 
and p = - 1 integers xj, yj, zj for j = 1,. . . ,i6 and we put 
m j := g( p, xj, yj, z,)(mod n). Following step 2) of the 
algorithm we reduce this to an equation 

g(p,xj, yj’,zj) =m((modn) (23) 

with lrngl I ,/m lpI < 51. Since m j factors completely 
over the primes less than 51 we have m ,l = ll,p$ with 
d,,jEiZ for j=l;. .,16. If the matrix (d,,j(mod2)),,j 
has rank 16, we find integers uj,P such that 

‘jdv,jUj,p = k,,(mod2), forlsv, ~~16. 
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This yields pP = Ilj(m,‘)u~.r+25+ for some integers r,,,, and 
thus we can solve the equation g(p, x, y, z) = p,(mod n) 
by compqsing solutions x;, y;, z,! of (23). [71 
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