
MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN

Individual Bit Security of the Discrete Logarithm:
Theory and Implementation Using Oracles

Master Thesis
by Richard Rex McKnight

Supervised by Prof. Dr. Otto Forster
March 2007

Acknowledgments

I would like to thank the Ludwig-Maximilians-Universität München for gra-

ciously accepting me into their International Master Program without which

this thesis would have been impossible.

Furthermore, I wish to express my sincerest appreciation to my supervisor

Prof. Dr. Otto Forster whose incredible patience and helpful insights are

directly responsible for the existence of this thesis.

Never to be forgotten are all of my friends, in Germany and abroad, to

whom I would like to convey my gratitude for providing me with endless

distractions outside of my studies.

Lastly, I am forever indebted to my parents who brought me into this

world, raised me with unconditional loving, supported me throughout all of

my undertakings in life, and instilled in me the passion to learn. To them,

my wonderful sister, and Toni, I dedicate this thesis.

1

Contents

1 Introduction 1

2 A Brief Review of Necessary Topics 3

2.1 Nomenclature . 3

2.2 Group Theory and Finite Fields 5

2.3 Binary Representation . 6

2.4 The Basics of Security by Encryption 9

3 Introduction to the Discrete Logarithm 11

3.1 Discrete Exponentiation . 11

3.2 Exponentiation by Squaring 12

3.3 The Discrete Logarithm . 13

3.4 Properties of the Discrete Logarithm 15

4 Applications of the Discrete Logarithm 17

4.1 The Diffie-Hellman Key Exchange 17

4.2 The ElGamal Encryption Scheme 19

5 Determining the Discrete Logarithm 21

5.1 Trial Multiplication . 21

5.2 Explicit Form . 21

5.3 Shanks’ Baby-Step Giant-Step Method 22

5.4 Pollard’s Rho Method . 23

5.5 The Pohlig-Hellman Method 25

5.6 The Index Calculus Method 28

6 Individual Bit Security 31

6.1 Survey of Required Concepts 31

i

6.1.1 Quadratic Residues . 32

6.1.2 The Legendre Symbol 33

6.1.3 Euler’s Criterion . 34

6.1.4 Taking Square Roots in Z
∗
p 35

6.2 The Idea of Bit Security . 37

6.3 The Easy Bits . 38

6.3.1 The 0th Bit . 38

6.3.2 Converting Quadratic Non-Residues 38

6.3.3 The Bit Border . 39

6.3.4 Extending the 0th Bit Idea 40

6.4 The Hard Bits . 41

6.4.1 A Useful Metaphor . 42

6.4.2 Wrap-Around in the Exponent 43

6.4.3 The Right Reduction Technique 44

6.4.4 Distinguishing Square Roots 45

6.4.5 The Left Reduction Technique 46

6.5 Putting It All Together . 47

6.5.1 Combining the Reductions 47

6.5.2 Handling Wrap-Around 48

7 Conclusions 52

A Source Code Listing 54

References 60

ii

List of Procedures

3.2.1 Exponentiation by Squaring 13

4.1.1 Diffie-Hellman Key Exchange 18

4.2.1 The ElGamal Encryption Scheme 19

5.3.1 Shanks’ Baby-Step Giant-Step Method 22

5.5.1 The Pohlig-Hellman Method 28

6.3.1 Determining the 0th Bit : easy bit(p, g, h) 38

6.3.2 Converting Quadratic Non-Residues : ensure QR(p, g, h) . . . 39

6.3.3 Determining the Bit Border : bit border(p) 39

6.3.4 Determining the Easy Bits : easy bits(p, g, h) 41

6.4.1 The Right Reduction : right reduction(p, g, h, i) 45

6.4.2 Distinguishing Square Roots : principal root(p, g, h, b) 46

6.4.3 The Left Reduction : left reduction(p, g, h, i) 47

6.5.1 Combining the Reductions : combine(p, g, h, i) 48

6.5.2 Determining the Discrete Logarithm : dlog(p, g, h, i) 51

iii

Declaration of Authorship

I hereby declare that I wrote this Master Thesis solely by myself and used

no resources other than those cited.

München, 30. March 2007 Richard R. McKnight

iv

Abstract

The intent of this paper is to provide a comprehensive overview of the discrete

logarithm problem including its properties, its cryptographic significance, the

known methods for solving it, and of utmost importance, its individual bit

security. The main result of the paper is an elegant proof showing how a

perfect oracle on almost any bit of the binary representation of the discrete

logarithm can be combined with clever reduction techniques to determine

the other bits. This proves that almost all individual bits of the discrete

logarithm are hard.

Specifically, the proof yields a procedure to determine the discrete loga-

rithm r := logg(h) of any element h in Z
∗
p for any odd prime p, any generator

g of Z
∗
p, and any perfect oracle on the ith bit where s ≤ i < n− 1 with s the

bit border of p and n the binary length of p− 1. Furthermore, the procedure

is extremely efficient in the sense that, on average, it only needs to query the

oracle 1.5 times for each bit it recovers.

Chapter 1

Introduction

According to the 2004 E-commerce Multi-sector Report, online purchas-

ing accounted for $996 billion in manufacturing shipments in 2004 ([Bur06,

p. 1]). Furthermore, US retailers’ e-commerce sales have increased approxi-

mately 25% in 2004 marking the third straight year as more businesses open

their virtual shops on the internet with the hopes of taking a bite out of these

new profits ([Bur06, p. 2]). However, none of this would be possible without

cryptographically secure means of handling the online purchase transactions.

Thus, it is of the utmost importance that these online transactions are en-

capsulated in a provably difficult security layer.

The study and development of this layer of security is known as Cryp-

tography. To be more precise, Cryptography may be thought of as the study

of sending data to another person through space and time in such a manner

that no other persons can easily comprehend the transmission. In the event

that another party is able to intercept the transmission, any modifications

to it should be detectable to the receiver.

This paper provides a basic overview of the current state of Cryptography

as it relates to the discrete logarithm problem which is at the heart of many

important data encryption schemes and key exchange protocols. These key

exchanges are prelude to using any one of the many other so called block

stream ciphers which then maintain the actual encrypted two-way commu-

nication channels. In turn, these encrypted channels facility the transfer of

sensitive information such as ones credit card numbers for online purchases

or ones private communications.

After developing the basic notations, elementary maths, and concepts of

1

Cryptography necessary for the paper in Chapter 2, the paper provides an

introduction defining the discrete logarithm and its associated properties in

Chapter 3. In Chapter 4, the paper underlines the importance of the discrete

logarithm problem by covering two practical applications of the discrete log-

arithm. Chapter 5 provides a detailed overview of the most common means

for solving the discrete logarithm problem. The main topic of the paper is

then reached in Chapter 6 which provides an elegant proof of the individ-

ual bit security of almost all of the discrete logarithm bits. Additionally,

Appendix A provides a translation of the proof into a working computer pro-

gram written in Aribas. Finally, the paper wraps up with some observations

about the main results and suggestions for future directions in Chapter 7.

2

Chapter 2

A Brief Review of Necessary

Topics

The next three sections provide a brief overview of the nomenclature, math-

ematics, and concepts necessary to understand Cryptography as used in this

paper.

2.1 Nomenclature

This paper does not subscribe to the view as some papers do that nota-

tional shorthand such as iff, ∃, or ∀, improves readability or comprehension.

Thus this paper chooses to use English where ever possible to express such

ideas. That being said, the paper does make use of the following conventional

nomenclature:

1. a = b denotes the standard mathematical concept of equality between

a and b.

2. a := b denotes that a is defined as b.

3. {s1, . . . , sk} denotes a finite set, i.e. a finite collection of distinct ele-

ments.

4. {s1, . . . , sk, . . . } denotes an infinite set, i.e. an infinite collection of

distinct elements.

3

5. A ⊂ B denotes that A is included in B. The type of inclusion depends

on the properties of A and B.

6. Z := {0,±1,±2, . . . } denotes the ring of integers.

7. Zn := {0, . . . , n− 1} denotes the ring of integers modulo an integer n.

8. Zp := {0, . . . , p− 1} denotes the field of integers modulo a prime p.

9. Z
∗
p := Zp \ {0} = {1, . . . , p − 1} denotes the multiplicative group of

integers modulo a prime p.

10. Fpf denotes the Galois field of order pf where p is prime and f is greater

than 0. In the case where f is 1, then Fp
∼= Zp.

11. 〈g〉 := {gr : r in Z} ⊂ G denotes the cyclic group generated by the

element g of the group G.

12. gcd(a, b) denotes the greatest common divisor of a and b. If gcd(a, b) =

1, then a and b are called relatively prime.

13. O(f(n)) denotes the asymptotic behavior of the function f(n) as n

tends toward infinity, also known as Big-O notation [MvOV96, sec. 2.3].

In particular:

(a) O(1) denotes the family of constant functions.

(b) O(log n) denotes the family of logarithmic functions.

(c) O(n) denotes the family of linear functions.

(d) O(nc) denotes the family of polynomial functions.

(e) subexponential denotes the family of functions that are asymp-

totically slower than a polynomial function, but asymptotically

faster than an exponential function.

(f) O(cn) denotes the family of exponential functions.

14. a = (an−1 . . . a1a0)b denotes the base b representation of the positive

integer a. Note that it consists of n := dlogb(a)e digits ai each in the

range {0, . . . , b− 1}.

4

When referring to the base b representation of an integer a, subscripts are

used to denote its individual bits, i.e. aj. This is not be confused with the

same notation used to denote a sequence of elements. However, it should be

clear from the context which notation is meant.

2.2 Group Theory and Finite Fields

Due to the discrete nature of the problem presented in this paper, almost all

of the work will be confined to the mathematics of group theory. As such, it

is assumed that the reader is well versed with the concepts of group theory

and the foundations on which it is built. An understanding of field theory is

recommended, although not explicitly necessary to follow the arguments in

this paper.

However, only those definitions and properties of group theory and of

finite fields which are frequently used are presented in this section. The

reader is advised to refer to the comprehensive review of Number Theory,

Abstract Algebra, and Finite Fields given in chapter 2, sections 4, 5, and 6,

respectively, of the “Handbook of Applied Cryptography” [MvOV96].

Theorem 2.2.1 (Fermat’s Little Theorem). Let a be an element of Z
∗
p, then

ap−1 ≡ 1 (mod p).

Fact 2.2.1. As Zp is a finite field, each element a in Z
∗
p is invertible and its

inverse is a−1 := ap−2 (mod p) since a ·ap−2 ≡ ap−1 ≡ 1 (mod p) by Fermat’s

Little Theorem.

Fact 2.2.2. Z
∗
p is a multiplicative cyclic group, i.e. there is an element g in

Z
∗
p such that 〈g〉 = Z

∗
p.

Theorem 2.2.2 (Chinese Remainder Theorem). Let n = n1n2 · · ·nk where

the ni are pairwise relatively prime integers, then there exists a unique integer

5

x module n solving the system of simultaneous congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ak (mod nk)

Furthermore, this x may calculated explicitly as

x ≡
k∑

i=1

aiNiMi (mod n)

where Ni = n/ni and Mi ≡ N−1
i (mod ni) [MvOV96, p. 68].

Fact 2.2.3. Let p be a prime and let f be an integer greater than 0, then

there exists a finite field of order pf and it is called the Galois field. In the

case where f is 1, then Fp
∼= Zp.

Remark. Although for all primes p, Fp
∼= Zp, it is not the case that Fpf

∼= Zpf

when the integer f is greater than 1.

2.3 Binary Representation

This section covers the various definitions and properties associated with

treating positive integers as binary numbers. Due to the multitude of defini-

tions in this section, they are marked with an emphasis and simply defined

via their context. Let r be a positive integer and n := dlog2(r)e, then r can

be represented in binary (base 2) by n bits (a state which is either 0 or 1) as

r = (rn−1 . . . r1r0)2 =
n−1∑

k=0

rk2
k

with rk from {0, 1} being the bits. When r is written in base 2 form, it

is called the binary representation of r. Note that the bits are enumerated

from right to left starting at zero. The ith most right bit is called the ith least

significant bit or the least significant bit when i is 0. The ith most left bit is

called the ith most significant bit or the most significant bit when i is n− 1.

6

Property 2.3.1. The following properties are derived from the definition of

the binary representation of r = (rn−1 . . . r1r0)2:

1. If r0 is 0, then r is even otherwise if r0 is 1, then r is odd. This is

known as the parity of r.

2. If rj is 0, then it can be set, i.e. toggled to 1, by adding 2j to r.

3. If rj is 1, then it can be cleared, i.e. toggled to 0, by subtracting 2j to

r.

4. The j least significant bits of r are all 0 if and only if r is divisible by

2j.

5. Multiplying r by 2j shifts all of the bits in the binary representation of

r up by j bits, i.e. r · 2j = (rn−1 . . . r1r00 . . . 0)2 with j trailing zeros.

This is known as shifting up by j bits.

6. Dividing r by 2j shifts all of the bits in the binary representation of r

down by j bits assuming r is divisible by 2j. This is known as shifting

down by j bits.

The reader should take some time to familiarize themselves with these

properties as they are used extensively throughout the paper. Furthermore,

of particular interest are the following three specific forms of r:

1. If r = (0 . . . 010 . . . 0)2 where the 1 is in the ith bit, then

r = 2i

2. If r = (1 . . . 1)2 where all n bits are 1, then

r =
n−1∑

k=0

2k = 2n − 1

by taking the sum of the geometric series.

3. If r = (0 . . . 01 . . . 10 . . . 0)2 where the 1s occupy the range from the jth

bit up to the (i− 1)th bit with j ≤ i, then

r = 2i − 2j

7

since

r =
i−1∑

k=j

2k =
i−1∑

k=0

2k −
j−1∑

k=0

2k = (2i − 1)− (2j − 1) = 2i − 2j

by using Case 2. Note that when i = j, this case degenerates to

r = 0 = (0 . . . 0)2.

It is important to realize that these cases can be combined with other

integers via addition and subtraction. Thus, if c < 2j+1 is a random, positive

integer, then r := 2i − 2j+1 + c has the binary representation

r = (0 . . . 01 . . . 1cj . . . c1c0)2

since the j + 1 bits of c do not interfere with the range of 1s starting at the

(j+1)th bit in r. This leads to the following fact regarding bits during binary

addition.

Lemma 2.3.1 (Bit Propagation). Given a positive, n bit integer r of the

form

r := 2i − 2j+1 + c = (0 . . . 01 . . . 1rj . . . r0)2

with c = (rj . . . r0)2 < 2j+1 an unknown integer and j + 1 ≤ i, let

r̃ := r + 2j = (r̃n−1 . . . r̃1r̃0)2

Then, r̃i = rj, that is, adding 2j to r propagates the unknown jth bit up to

the ith bit. Furthermore, the lemma may again be applied to r when rj = 1

and to r̃ when rj = 0.

Proof. Consider the following two cases for rj:

1. If rj = 0, then c < 2j and still r = 2i − 2j+1 + c. Thus,

r̃ = r + 2j = (2i − 2j+1 + c) + 2j = 2i − 2j + c

Hence, the ith bit is 0 as in Case 3, so r̃i = 0.

2. If rj = 1, then c = 2j + c̃ with c̃ < 2j and hence

r = 2i − 2j+1 + c = 2i − 2j + c̃

Thus, r̃ = r + 2j = 2i + c̃ and the ith bit is 1 as in Case 1, so r̃i = 1.

Note that Lemma 2.3.1 works regardless of which values the j least sig-

nificant bits have in r since they do not interfere with the higher bits.

8

2.4 The Basics of Security by Encryption

The essence of a secure encryption is that knowing the ciphertext gives no ad-

ditional information about the plaintext. Hence, the probability of a certain

plaintext message occurring is the same regardless of whether the ciphertext

is known or not. Due to the seminal work of Claude Shannon, the field of

Information Theory was created and precise conditions for perfect secrecy

were able to be formulated mathematically [Sha49].

However, the only method of encryption which is theoretically capable of

this perfect secrecy is the One Time Pad in which the original message to be

transmitted is combined with a completely random key of equal length. Of

course, this is subject to the main conditions that the key be kept completely

secret and be used one time only - often necessitating that multiple keys be

distributed beforehand to all parties on a pad (hence its namesake).

Unfortunately, the One Time Pad is not a very practical method as it

requires that all parties involved in the encrypted transmission agree ahead

of time on the pad key to be utilized. In other words, it is not very useful

for public key encryption where the parties who wish to communicate may

have never meet as is almost always the case for online purchase transac-

tions. Therefore, modern Cryptography focuses instead on the development

of reasonably difficult to break secrecy where the foundation of this difficulty

is based around the existence of one-way functions.

Definition 2.4.1 (One Way Functions). A function f : X → Y is considered

one-way if:

1. Given any x ∈ X, it is computationally “easy” to find f(x).

2. Given “almost any” y ∈ Y , it is computationally “difficult” to find

some x ∈ X such that f(x) = y.

Definition 2.4.2 (Computationally Easy). A function is “easy” when there

exists an algorithm which can compute the value of the function for all inputs

in probabilistic polynomial time. That is when the algorithm is inherently

random and runs in a time bounded by some polynomial function of the

input size.

Definition 2.4.3 (Computationally Difficult). A function is “difficult” when

there exists no such algorithm as described above.

9

Remark. In the above definition, “almost any” is used to suggest that it may

be possible for a few specific elements to be “easy”. Another way of phras-

ing it could be: Given an element y ∈ Y at random, it is computationally

“difficult” to find some x ∈ X such that f(x) = y [MvOV96, p. 8].

In Cryptography, it is often of great importance to possess one-way func-

tions for the purpose of encryption. The primary use of one-way functions is

for establishing an encrypted communication between two parties as will be

covered later. Unfortunately, regardless of how computationally intractable

many one-way functions appear, it is not currently known whether or not

such functions really exists.

When working in an infinite field such as the real numbers it is just as

easy to exponentiate, i.e. h = gr, as it is to take a logarithm, i.e. r = logg h.

In the setting of finite cyclic groups, it is still fast to exponentiate modulo

the group order using exponentiation by squaring (covered in Section 3.2)

where the time is polynomial in the number of bits comprising r. However,

calculating the logarithm, that is finding r so that h = gr, is considerably

more difficult. It is this property that has lead to the widely held belief that

modular exponentiation is a one-way function [Odl00, p. 6]. Along side fast

exponentiation by squaring, integer multiplication is the other most common

candidate for a one-way function.

The details regarding how a one-way function is used to achieve encryp-

tion depends upon the encryption scheme, but the basic concept is that the

“easy” way is used to encrypt the data with the knowledge that it is “diffi-

cult” to reverse the operation and decrypt the data. In the case of integer

factorization, there is usually a trapdoor built into the algorithm which al-

lows the previously “difficult” reverse operation to be performed relatively

quickly. In the case of exponentiation by squaring, the recipient of the data

reciprocates a similar process on their end and their results taken together

and combined with a judicial use of discrete mathematics provides the means

for decryption (covered in Chapter 4).

To better understand the relevance of one-way functions, the reader is

encouraged to read the seminal paper of Diffie and Hellman [DH76] where the

concept was first introduced. The particular case of discrete exponentiation

is examined and expanded upon in the following chapters.

10

Chapter 3

Introduction to the Discrete

Logarithm

The Discrete Logarithm Problem (occasionally referred to as the DLP) is

an important problem whose solution is believed to be as difficult as that of

Integer Factorization. Like Integer Factorization, the Discrete Logarithm is

an example of a believed one-way function and as such it is easiest to define

it via its inverse - the discrete exponentiation function.

3.1 Discrete Exponentiation

Discrete exponentiation is the analogue of the familiar exponentiation just

taking place in a finite cyclic group.

Definition 3.1.1 (Discrete Exponentiation). Let G be a finite cyclic group

of order n, written multiplicatively, and let g be a generator of G. Then the

discrete exponentiation function is defined as would be expected:

expg : Zn −→ G, r 7−→ gr

Since g is a generator of G, its order is n and hence for i in Zn the elements

gi are distinct from one another. Thus the map expg is injective. However,

both the domain Zn and the range G of this map contain n elements which

means expg is in fact bijective. Now, the naive method of computing this

function is to simply calculate gr =

r︷ ︸︸ ︷
g · · · g via repeatedly multiplying g by

11

itself r − 1 times which requires O(r) group operations. Luckily there is a

vastly superior technique which is covered in the next section.

3.2 Exponentiation by Squaring

The trick to developing a faster exponentiation method is based on exploiting

the binary representation of the exponent r = (rk−1 . . . r1r0)2. First note that

r can be written succinctly as

r =
k−1∑

j=0

rj2
j =

k−1∑

j=0
rj=1

2j =
∑

rj=1

2j

Thus, gr can be expressed as

gr = g
P

ri=1
2i

=
∏

ri=1

g2i

Then, taking advantage of the relationship

g2i

= (g2i−1

)2

it is possible to produce the g2i

in succession using a single squaring operation.

Hence, the number of group operations required to compute gr is based only

on the binary length of r!

This procedure, known as exponentiation by squaring, can be expressed

succinctly in the following recursive form:

expg(r) :=





1, if r is 0

exp2
g(r/2), if r is even

g · exp2
g((r − 1)/2), if r is odd

Because it only needs at most as many multiplication and squaring opera-

tions as the length of the binary representation of the input, this method

runs in just O(log2(r)) time. That means that this improvement allows for

the extremely fast calculation of the algorithm even for very large values

of r. Furthermore, the properties of groups guarantee that g−r = (gr)−1

which makes it possible to also use this method with negative exponents,

12

expg(−r) = exp−1
g (r), provided there is a means to invert elements. Now

that the discrete exponentiation function is defined and understood to be

efficient to calculate, the next section will cover its inverse, and the essential

topic of the paper, the discrete logarithm function.

Procedure 3.2.1 Exponentiation by Squaring

Require: g in G and r in Z with G a multiplicative cyclic group

Ensure: h = gr

1: h← 1 /* 1 is the identity element of G */

2: while r > 0 do

3: if r is odd then

4: h← h · g
5: r ← r − 1

6: end if

7: h← h2

8: r ← r/2

9: end while

3.3 The Discrete Logarithm

As mentioned in the beginning of the chapter, the discrete logarithm is simply

defined as the inverse of the discrete exponential function:

logg : G −→ Zn

While this definition is quite correct, for the sake of clarity, it is defined more

verbosely below and some additional formulations of the problem are given

as well.

Definition 3.3.1 (Discrete Logarithm). Let G be a finite cyclic group of

order n, written multiplicatively, let g be a generator of G, and let h be an

element of G. Then the discrete logarithm of h to the base g is the unique

integer r in Zn such that h = gr, denoted logg(h).

Note that in defining the discrete logarithm, it actually suffices to chose an

element h of large order in an arbitrary multiplicative group G and then work

in the generated subgroup H := 〈h〉 ⊂ G. On the other hand, cryptographic

13

schemes such as the Diffie-Hellman key exchange, covered in Section 4.1, use

the discrete logarithm for producing random elements. However, then these

elements are not truly random in G as they are confined to the subgroup H.

Thus, as explained in [Kob87, pp. 95–96], if these random elements are to

have any chance of appearing random in G, it follows that H and G should

coincide with each other as in Definition 3.3.1.

Remark. The reader should note that some authors choose to refer to the

discrete logarithm as the index, denoted indg, as this is the classical desig-

nation originating from when Gauß constructed index tables of the discrete

logarithm for various values of the prime p.

It may help the reader to imagine the multiplicative group Z
∗
p = {1, . . . , p−

1} as a concrete instance of the finite cyclic group G. In this case:

logg : Z
∗
p −→ Zp−1

That is, the discrete logarithm converts multiplication of integers modulo a

prime p into addition of integers modulo p− 1. Additionally, most examples

in the paper will be given in this group.

Example 3.3.1. Let G := Z
∗
29 be the finite cyclic group, let g := 2 be the

generator of G, and let h := 17 be the element of G. Then the discrete

logarithm is r := logg(h) = log2(17) = 21 because gr = 221 = 2097152 ≡ 17

(mod 29).

Definition 3.3.2 (Generalized Discrete Logarithm Problem). Given a finite

cyclic group G of order n, written multiplicatively, a generator g of G, and

an element h of G, then the generalized discrete logarithm problem or GDLP

is the problem of finding the unique r in Zn such that h = gr.

Definition 3.3.3 (Discrete Logarithm Problem). Given a prime number p,

a generator g of Z
∗
p, and an element h of Z

∗
p, then the discrete logarithm

problem or DLP is the problem of finding the unique r in Zn such that

h = gr.

Since the most common setting for the discrete logarithm has historically

been in Z
∗
p, the discrete logarithm problem normally only refers to the later

case. Thus there is a need to distinguish between the generalized case and

14

the special case of the discrete logarithm problem in modern parlance. Fur-

thermore, it is necessary to restrict the value of r in the previous definitions

to the range 0 ≤ r < n to ensure a unique answer to the solution of gr = h.

This is due to the fact that gn = e where e is the identity element of G.

Hence if r := logg(h) is a solution to gr = h, then so are all infinitely many

of rj := r + j · n for j in Z since

grj = gr+j·n = gr(gn)j = gr(e)j = gr = h

Therefore, it is always implicitly assumed that when dealing with the

discrete logarithm in a finite group G of order n, the corresponding exponents

are calculated in Zn, in other words they are treated as integers modulo n.

Now that the discrete logarithm has been defined, its properties are examined

in the next section.

3.4 Properties of the Discrete Logarithm

The same properties of the familiar logarithm on the real number line fortu-

nately also hold for the discrete version. For the remainder of this section,

let G be a finite cyclic group of order n, written multiplicatively, and let g

be a generator of G.

Definition 3.4.1 (Multiplication Property). Given two elements h1 and h2

of G, then

logg(h1 · h2) ≡ logg(h1) + logg(h2) (mod n)

Definition 3.4.2 (Exponentiation Property). Given an element h of G and

an integer a in Z, then

logg(h
a) ≡ a logg(h) (mod n)

Definition 3.4.3 (Change-of-Base Property). Given a second generator g̃ of

G and an element h of G, then

logg̃(h) ≡ logg(h)/ logg(g̃) (mod n)

Proof. The proofs of these properties are left as an exercise for the reader

15

Remark. The cautious reader should have noticed that since Zn is an additive

group, division is not generally possible as not all elements are guaranteed

to be invertible. In fact, an element r of Zn is invertible if and only if

gcd(r, n) = 1, that is, when r and n are relatively prime. However, given

that g̃ = gk for some k in Zn and that g̃ is a generator of G if and only if

gcd(k, n) = 1, it should now be clear that logg(g̃) = k is invertible in Zn.

As a result of the Change-of-Base Property, the choice of the generator in

either definition of the discrete logarithm problem is irrelevant to the actually

difficultly of the problem. This can be seen as follows. Assume there is a

method for solving the discrete logarithm problem to the base g in the group

G. Then given a second generator g̃ of G and an element h of G, it is possible

to efficiently convert the problem of finding logg̃(h) into a problem involving

the discrete logarithm base g via the Change-of-Base Property. Thus, all

generators are essentially equivalent.

The next chapter demonstrates how the discrete logarithm is used as the

basis of various cryptographic schemes and why its simple definition allows

short and concise implementations of these schemes.

16

Chapter 4

Applications of the Discrete

Logarithm

In this section, two applications for the discrete logarithm are presented to

motivate the elegance of methods based around the discrete logarithm and

also to demonstrate its importance in the field of Cryptography.

4.1 The Diffie-Hellman Key Exchange

Until 1976, the only methods for sending sensitive data between two par-

ties across insecure transmission lines required that both parties shared a

previously agreed upon random secret key. One party could use the key to

encrypt the data before sending it and the other party could use the same key

to decrypt and recover the received data. Unfortunately, this required each

party to store a normally lengthy list of secret keys for each of the possibly

many parties with whom they wished to communicate. Worse still, it was

impossible for two parties to communicate securely if they had never meet

and hence not previously agreed on this secret key.

What was needed was a way for both parties to generate the same ran-

dom secret key by only transmitting partial (public) information while main-

taining some additional (private) information. That is, for both parties, a

combination of ones private information with the others public information

could procure the common secret key that would be used with the usual

encryption methods. Nowadays this is called hybrid encryption.

17

The first practical solution to this problem was developed by Diffie and

Hellman in their ground breaking paper “New Directions in Cryptography”

[DH76] and took advantage of the difficultly of the discrete logarithm prob-

lem. The following procedure describes how their original protocol is used

to establish the common, random secret key between two parties over an

insecure connection. As is customary in most cryptographic literature, the

names of the two parties in question are referred to as Alice and Bob.

Procedure 4.1.1 Diffie-Hellman Key Exchange

1: Both Alice and Bob agree on a large prime p and a generator g of Z
∗
p by

communicating over the insecure channel.

2: Alice selects a random element x in the range 1 < x < p − 1, computes

X := gx (mod p), keeps x private and makes X public to Bob over the

insecure channel.

3: Bob selects a random element y in the range 1 < y < p − 1, computes

Y := gy (mod p), keeps y private and makes Y public to Alice over the

insecure channel.

4: Alice determines the secret random key as K := Y x (mod p).

5: Bob determines the secret random key as K := Xy (mod p).

Notice that Alice and Bob need only perform Step 1 once ever since, for an

appropriately large prime p, the group Z
∗
p provides a huge selection of random

elements for use in Steps 2 and 3. Also, since exponentiation by squaring

from Section 3.2 can be used to compute X, Y and K, Steps 2 through 5

can always be found efficiently. Most importantly, in Steps 4 and 5, Alice

and Bob do in fact both arrive at the same random secret key since

K ≡ Y x ≡ (gy)x ≡ (gx)y ≡ Xy (mod p)

Hence, using this procedure allows Alice and Bob to agree upon a random

secret key in Z
∗
p without having to communicate it explicitly over their shared

insecure channel.

It is conjectured that for an eavesdropper to use X := gx (mod p) and

Y := gy (mod p) to determine K := gxy (mod p) directly, is difficult. This

is known as the Computational Diffie-Hellman (CDH) assumption and it is

believed to be as hard as the discrete logarithm problem [MvOV96, sec. 3.7],

although this remains unproven as of March 2007. Therefore, the best chance

18

to recover the secret key is to use the discrete logarithm to determine x =

logg(X), or y = logg(Y), and then to calculate K = Y x (mod p), or K = Xy

(mod p). However, for appropriate primes p, the intractability assumption

on the discrete logarithm problem implies that this task is very difficult and

hence the Diffie-Hellman key exchange is quite secure.

4.2 The ElGamal Encryption Scheme

Although hybrid encryption systems provide a good balance of speed and

security, it is possible to use the same machinery of the previous section to

design a full cryptosystem. It turns out that the Diffie-Hellman key exchange

can be extended to encrypt messages by utilizing the secret key as a session

key as demonstrated in the following encryption scheme developed by ElGa-

mal [ElG85]. In this case, it is assumed that Bob wishes to send a secure

message to Alice over an insecure channel.

Procedure 4.2.1 The ElGamal Encryption Scheme

1: Both Alice and Bob agree on a large prime p and a generator g of Z
∗
p by

communicating over the insecure channel.

2: Alice selects a random element x in the range 1 < x < p − 1, computes

X := gx (mod p), keeps x private and makes X public to Bob over the

insecure channel.

3: Bob selects a random element y in the range 1 < y < p − 1, computes

Y := gy (mod p), and keeps y private.

4: Bob then encodes his secret message m in Z
∗
p as m̃ := Xy ·m and sends

the pair (Y, m̃) to Alice.

5: Alice decodes Bob’s message as m = Y −x · m̃ using her private key x.

Notice that the first three steps of this procedure are virtually identical

to those of the Diffie-Hellman key exchange from Procedure 4.1.1, so only

the last two steps are examined in detail. Concerning Step 5, note that since

Y −x ≡ Y p−1−x ≡ g−xy (mod p)

Alice does in fact recover Bob’s secret message correctly because

Y −x · m̃ ≡ Y −x ·Xy ·m ≡ g−xy · gxy ·m ≡ m (mod p)

19

Now, a few comments regarding Step 4. First, if Bob’s secret message m

when viewed as a number is too large to be an element of Z
∗
p, then it can be

broken into smaller, equal-sized chunks mj with j in Z which when viewed

as numbers are elements of Z
∗
p. Then the procedure is simply performed

on each mj. Second, since Bob transmits a pair of elements from Z
∗
p, the

encrypted message is twice the size of the original message which can be seen

as a disadvantage when compared to other cryptosystems.

The security of this encryption scheme is clearly dependent on the security

of the Diffie-Hellman key exchange and hence on the Computational Diffie-

Hellman assumption. However, whereas the key generated by the Diffie-

Hellman key exchange is normally used as a seed for a symmetric encryption

system, in this case it is used immediately to encrypt Bob’s secret message. In

fact, this scheme can be viewed as Bob merely “masking” his secret message

m with the common secret key K := Xy (mod p) and providing the “clue”

Y to Alice which together with her secret x allow her to remove the mask

and decrypt the message ([Kob87, p. 97] and [MvOV96, note 8.23]).

Unfortunately, the Legendre symbol (covered in Section 6.1.2) of X and Y

exposes the Legendre symbol of K. Thus, K leaks some information which an

eavesdropper could use in gleaning some information about m from m̃ = K ·m
[Bon98, p. 10]. Therefore, the security of the ElGamal encryption scheme

rests on the Decisional Diffie-Hellman (DDH) assumption which states that

a tuple (g, gx, gy, gxy) with x and y chosen at random is computationally

indistinguishable from a tuple (g, gx, gy, gz) with x, y and z chosen randomly.

This assumption is believed to be stronger than the Computational Diffie-

Hellman assumption.

This section detailed how the discrete logarithm provides an incredibly

versatile basis for use in cryptographic applications. The next section cov-

ers various methods for solving the discrete logarithm problem and hence

indirectly demonstrates the reasons why the discrete logarithm is considered

computationally intractable.

20

Chapter 5

Determining the Discrete

Logarithm

It is important to cover the various techniques currently known for solving

the discrete logarithm problem both to understand better the reasons it is

believed to be computationally intractable as well as to develop a background

for the next section of the paper.

5.1 Trial Multiplication

The most obvious approach to solving the discrete logarithm in G is to contin-

ually exponentiate the generator g until the desired group element is reached,

i.e. Try using i = 0, . . . , n − 1 until gi = h at which point the solution is i.

This method is clearly not effective when the group order gets too large, as

is generally the case, since it requires O(n) group operations to run.

5.2 Explicit Form

A surprising result regarding the discrete logarithm is that there does in

fact exist an explicit formula over the multiplicative group of fields of prime

power order. As was shown by Niederreiter in [Nid90], given any h in F
∗
pf

with pf ≥ 3, the following holds:

logg(h) ≡ −1 +

pf−2∑

i=1

yi

g−i − 1
(mod p)

21

Since the equation holds modulo p, it is only an explicit formula when

dealing with prime fields (i.e. f = 1), in which case it does yield a useful

result. However, while this is an elegant solution, it is no better than the

trial multiplication method above as it must take the sum across all of the

elements of the group which necessitates O(n) group operations.

5.3 Shanks’ Baby-Step Giant-Step Method

The Baby-Step Giant-Step [Sha71] is the most straight forward and intuitive

of the algorithms for solving the discrete logarithm problem in an arbitrary

finite cyclic group of order n. It is based on the premise that r may be

expressed as r = s ·m + t with 0 ≤ s, t ≤ m− 1 for the constant m := d√ne.
This yields

h = gr = gs·m+t ⇒ gs·m = hg−t

This insight gives Procedure 5.3.1, attributed to Shanks.

Procedure 5.3.1 Shanks’ Baby-Step Giant-Step Method

Require: G a multiplicative cyclic group of order n with generator g and h

an element of G.

Ensure: r = logg(h)

1: H ← ∅ /* H is an associative array or hash table */

2: for s = 0 to m− 1 do

3: H[gs·m]← s /* Store the pair (gs·m, s) in H */

4: end for

5: for t = 0 to m− 1 do

6: if H[hg−t] exists then /* If (hg−t, ·) matches an entry in H */

7: s← H[hg−t]

8: r ← s ·m + t

9: end if

10: end for

In practice, it is best to use a hash table to store the tabulated results

from the first loop which allows a near constant time lookup in the second

loop. Further improvements are attained by simply pre-computing g−1 before

the loop and by keeping a running variable h̃ which is initialized to h and

22

updated in the loop as h̃ := h̃g−1 giving h̃ = hg−t to use inside the second

loop.

Example 5.3.1. Let G := Z
∗
29 with generator g := 2, find logg(17). First,

let h := 17, m := d
√

29e = 6, g−1 = 2−1 ≡ 15 (mod 29). Build the pairs for

the first step.

s 0 1 2 3 4 5

gs·m ≡ 26·s (mod 29) 1 6 7 13 20 4

Begin the loop for the second step.

loop iteration, t 0 1 2 3

hg−t ≡ 17 · 2−t (mod 29) 17 23 26 13

When t = 3 the algorithm finds 17 · 2−6·3 = 13 in the table paired with

s = 3, it equates 26·3 = 17 · 2−3. Hence 17 = 221 and so it computes

r := s ·m + t = 3 · 6 + 3 = 21 as the answer.

The most important aspect of this algorithm is that the practical imple-

mentation solves the discrete logarithm problem deterministically in O(
√

n)

time and O(
√

n) space. For the curious, the name of the algorithm is derived

from the fact that the first loop calculates the powers of gi in “giant” steps

i = 0,m, 2m, . . . ,m(m−1) whereas the second loop effectively calculates the

powers of gi in “baby” steps i = 0, 1, 2 . . . ,m− 1.

5.4 Pollard’s Rho Method

While the previous method is able to solve the discrete logarithm problem in

O(
√

n) space and time, as n becomes very large the requirement of O(
√

n)

space becomes unreasonable for computers. On the other hand, even for

the same large n, the O(
√

n) time requirement is far more accessible to

computers. For this reason, it would be nice to possess an algorithm that

reduces the space complexity to a constant O(1) which is precisely what the

following algorithm achieves.

The Pollard Rho Method [Pol78] is a probabilistic algorithm based on

Floyd’s cycle-finding algorithm for detecting cycles in arbitrary sequences in

just O(1) space. Given the problem of solving for r in the equation h = gr,

23

the idea is to generate a pseudo-random sequence of the form si := hxigyi

with xi and yi in Z. When a cycle si = sj is found in the sequence, it gives

hxigyi = hxjgyj and hence gyi−yj = hxj−xi = gr·(xj−xi). Therefore, the sought

after r can be found be solving the equation yi − yj ≡ r · (xj − xi) (mod n).

One implementation of the pseudo-random sequence generator is as fol-

lows. First, given the cyclic group G of order n, partition the group into

three subsets S0, S1 and S2 of roughly equal size such that S1 does not con-

tain 1 and such that it is quick to determine set membership for all elements.

Second, define the pseudo-random sequence as:

s0 := 1 and si+1 :=





h · si, si in S0;

s2
i , si in S1;

g · si, si in S2

which indirectly defines the following two sequences reflecting the exponents

of h and of g in si := hxigyi generated via the above:

x0 := 0 and xi+1 :=





xi + 1 (mod n), si in S0;

2xi (mod n), si in S1;

xi, si in S2

y0 := 0 and yi+1 :=





yi, si in S0;

2yi (mod n), si in S1;

yi + 1 (mod n), si in S2

Third, begin generating the sequence si as well as a second sequence s2i

(accomplished by merely iterating the formulas twice each step) until si = s2i

which is quite likely to happen since the group is finite. Then hxigyi = hx2igy2i

and hence gy2i−yi = hxi−x2i = gr·(xi−x2i) which yields r · (xi− x2i) ≡ (y2i − yi)

(mod n). Therefore, this procedure produces a congruence that can be solved

to give the desired value of r for logg(h).

In the highly improbable case that xi ≡ x2i (mod n), it is necessary to

restart the algorithm using a different initial condition s0 := hx0gy0 with x0

and y0 randomly chosen from {1, . . . , n−1}. Otherwise, let a := xi−x2i 6= 0

and let b := y2i − yi, then the congruence

ar ≡ b (mod n) (5.1)

24

has a solution only when gcd(a, n) = 1, i.e. when a and n are relatively

prime. If this is the case, then the r can be found and the process ends.

If this is not the case, then d := gcd(a, n) > 1. So, let ñ := n/d, let

ã := a/d, and let b̃ := b/d which is valid since b = ar − nk for some integer

k. Then note that gcd(ã, ñ) = 1 and so

ãr̃ ≡ b̃ (mod ñ) (5.2)

has a solution. Given that r̃ is the solution to (5.2), then the solution to

(5.1) must satisfy r ≡ r̃ (mod ñ). This means that r = r̃ + l · ñ for some l in

the range 0 ≤ l < d. Hence, by testing all of these possible values of l, the

solution r can be discovered. In the event that d is too large for this technique

to be practical, it is necessary to repeat the entire procedure from the start

with different initial conditions and hope that the situation improves.

Assuming that the sequences act truly random, that is, they yield all

group elements with equal probability, then the probability that the two

sequences both generate the same group element on the same step is governed

by the principal of the Birthday Paradox. It states that after individually

selecting m random elements from a group of n elements, the probability

that two are the same is approximately 1 − e−m2/2·n. Thus, in practice, the

algorithm only requires approximately 0.6267
√

n steps to run and due its

probabilistic nature only a constant amount of space.

5.5 The Pohlig-Hellman Method

The previous two methods for solving the discrete logarithm gave explicit

instructions on how to tackle the problem in a group G. However, when

the order of the group becomes exceedingly large, neither method is com-

putationally feasible any longer. This section introduces the Pohlig-Hellman

method [PH78] which is a process for reducing the discrete logarithm problem

in a group of large order into many discrete logarithm problems in groups of

smaller order, under certain circumstances. This allows other techniques to

be used in the smaller groups such as Baby-Step Giant-Step from Section 5.3

or Pollard Rho from Section 5.4.

In the following arguments adapted from [Sti02, ch. 5], assume that G is

a multiplicative cyclic group of large finite order n with a generator g, that

25

h is an element of G, and that r = logg(h) is the solution to the discrete

logarithm problem in question, that is h = gr.

Now, suppose that

n = pe0

0 pe1

1 · · · pek

k =
k∏

i=0

pei

i

is the unique prime factorization of the group order n with ei ≥ 1. If the

solutions ri to the equations

r ≡ ri (mod pei

i)

were known for all i in {0, . . . , k}, then by using the Chinese Remainder Theo-

rem, it would be possible to construct the desired solution r (mod n). Hence,

the analysis may be restricted to finding a particular solution ri (mod pei

i).

Thus, assume that i is fixed and to simplify the notation that

b := ri, e := ei, and p := pi

Then, viewing b as a number written base p gives

b = (be−1 . . . b1b0)p =
e−1∑

j=0

bjp
j

with bj in {0, . . . , p − 1}. Further, note that the desired solution r can be

expressed in terms of b as

r = b + pem

for some integer m. Hence the following chain of equations modulo n holds

n

p
· r ≡ n

p
· (b + pem)

≡ n

p
·
(

e−1∑

j=0

bjp
j + pem

)

≡ n

p
·
(

e−1∑

j=1

bjp
j + pem + b0

)

≡ n ·
(

e−1∑

j=1

bjp
j−1 + pe−1m

)
+

n

p
· b0

≡ n

p
· b0 (mod n)

26

This formula combined with the fact that gn ≡ 1 (mod n) yields the key

insight for this section

hn/p ≡ g(n/p)·r ≡ g(n/p)·b ≡ g(n/p)·b0 (mod n) (5.3)

Again, cleaning up the notation, let

h̃ := hn/p and g̃ := gn/p

Next note that g̃ is a generator for the cyclic subgroup of order p in G. Thus

Equation (5.3) can be expressed as

h̃ ≡ g̃b0 (mod n)

and so b0 = logg̃(h̃) gives a new discrete logarithm problem to be solved in a

group of order p which depending on the size of p is likely far more accessible

than in G.

Of course, if e > 1, then the remaining values for b1 up to be−1 still need

to be computed. To handle this, note that

p divides
e−1∑

j=1

bjp
j = (be−1 . . . b10)p = b− b0

and hence b can be redefined as

b := (b− b0)/p

which effectively redefines h as

h := (hg−b0)n/p

in order to maintain the relation h ≡ gb (mod n). This shifts the base

p representation of b down by one, leaving b1 as the least significant digit

where b0 was before. By (5.3), this results in

hn/p ≡ g(n/p)·b ≡ g(n/p)·b1 (mod n)

which means the process used to recover b0 can again be used for b1. Contin-

uing the process of redefining b and h, applying (5.3), and solving the new

discrete logarithm problem, allows all of the digits bj of b to be found.

27

Once all of the digits of b := ri have been determined, the entire method

can be repeated to find ri for all i and then these results recombined via the

Chinese Remainder Theorem to yield the final answer for r = logg(h) where

h is its original value. This is formally expressed in Procedure 5.5.1.

Procedure 5.5.1 The Pohlig-Hellman Method

Require: G a multiplicative cyclic group of order n with generator g and h

an element of G.

Ensure: r = logg(h)

1: Find the prime factorization of n = pe0

0 pe1

1 · · · pek

k with ei ≥ 1.

2: for i = 0 to k do

3: e← ei

4: p← pi

5: g̃ ← gn/p

6: for j = 0 to e− 1 do

7: h̃← hn/p

8: bj ← logg̃(h̃) /* i.e. using the Pollard Rho method (5.4) */

9: h← (hg−bj)n/p

10: end for

11: ri ←
∑e−1

j=0 bjp
j

12: end for

13: Use the Chinese Remainder Theorem to compute the r such that r ≡ ri

(mod pei

i) for all i.

As this procedure only requires a polynomial number of group operations

to reduce and recombine the results, its running time is realistically bounded

by the specific method used to solve the discrete logarithm problem in the

smaller groups. Thus, it is possible to select whichever method is best suited

for the particular group to obtain optimal performance. Unfortunately, this

procedure is only suitable when the prime factorization of n contains mostly

small primes.

5.6 The Index Calculus Method

Until now, all of the methods for solving the discrete logarithm problem

required, in the worst case, at least O(
√

n) group operations when working

28

in a cyclic group of order n. This section briefly describes a novel method for

solving the discrete logarithm problem which has a subexponential running

time. Known as the Index Calculus method, it is divided into two distinct

stages. The first stage consists of pre-computing the solutions to a number

of discrete logarithm problems in the group while the second stage then

attempts to solve a specific discrete logarithm problem by utilizing these

pre-computed solutions.

1. The First Stage

Begin by forming a small subset P := {p1, . . . , pk} of elements from G,

called the factor base, such that a substantial portion of the elements in

G can be represented as a product of elements from P . Next, continue

to select random integers b from Zn until gb can be represented as

gb =
k∏

i=1

pei

i (5.4)

with ei ≥ 0. Then taking the discrete logarithm of both sides of (5.4)

yields

b ≡
k∑

i=1

ei logg(pi) (mod n) (5.5)

where the logg(pi) are unknown.

Repeating this process k + c times for some constant c ≥ 0 gives k + c

relations (5.5) in k variables, the logg(pi), which can then be solved

modulo n via many available techniques (refer to [Coh96, ch. 2]). This

allows the discrete logarithm problem to be determined for each element

of the factor base P .

Note that the size of the factor base k must be chosen large enough

that Equation (5.4) exists for most of the randomly selected b, but small

enough that solving for the logg(pi) can be done efficiently. Also, the

constant c must be carefully tuned to guarantee that the k+c relations

have a good chance of yielding a unique solution, although c ≈ 10 is

recommended by many authors ([MvOV96, p. 110] and [Sti02, p. 171]).

2. The Second Stage

29

In order to find r := logg(h) given an element h of G, do the follow-

ing. Continue to choose random integers b in Zn, until hgb can be

represented as

hgb =
k∏

i=1

pfi

i (5.6)

with fi ≥ 0. Then, as before, taking the discrete logarithm of both

sides of (5.6) and rearranging terms yields

logg(h) ≡
k∑

i=1

fi logg(pi)− b (mod n) (5.7)

where this time the logg(pi) are known from the pre-computation in

the first step and hence r := logg(h) can be found quickly.

Unfortunately, as the cautious reader may have recognized, no technique

was mentioned for how to select the factor base or for how to generate the

relations in (5.4) and (5.6). That is because efficient means for both these

problems are only known for some cyclic groups, notably Z
∗
p, Z

∗
2n , and Z

∗
pn

[MvOV96, sec. 3.6.5]. Luckily, these groups are among the most common in

contemporary usage.

Furthermore, compensating for these limitations, is the fact that the In-

dex Calculus method and its variants are the only known subexponential

procedures for solving the discrete logarithm problem. More precisely, heuris-

tics have shown that the asymptotic running time for the pre-computation

stage is O(e(1+o(1)
√

ln p ln ln p)) and for the second stage is O(e(1/2+o(1)
√

ln p ln ln p))

([Sti02, p. 172]).

30

Chapter 6

Individual Bit Security

The reader should now be quite familiar with the definition of the discrete

logarithm, its properties, its uses in Cryptography and the various techniques

for solving it. The discrete logarithm’s distinction as a suspected one-way

function clearly implies the elusive nature of an efficient solution for it, if

one exists at all. However, it may still be possible to glean some partial

information about its solution. This chapter focuses on what information

can be easily found, what parts remain secure, and most importantly, what

conditions dictate the division between these two extremes.

As working in Z
∗
p provides a simple setting for the presentation of the fol-

lowing sections, it is assumed for the remainder of this chapter that the dis-

crete logarithm takes place in the multiplicative group Z
∗
p. Furthermore, the

results are accompanied by computer implementations which benefit greatly

from the fact that elements of Z
∗
p are integers, a type natively supported

in most all programming languages. The reader may wish to refer to the

Source Code Listing in Appendix A for concrete demonstrations as they pro-

ceed through this chapter.

6.1 Survey of Required Concepts

At the heart of the this chapter is the concept of quadratic residues which,

as will be seen later, prove instrumental in developing the results throughout

this chapter and ultimately provide a key to inverting the discrete logarithm.

31

6.1.1 Quadratic Residues

Definition 6.1.1 (Quadratic Residues). Let p be an odd prime number. An

integer a is called a quadratic residue modulo p, abbreviated QR, if there

exists an integer b such that b2 ≡ a (mod p). If no such integer exists,

then a is called a quadratic non-residue modulo p, abbreviated QNR. This

characterization of a is called the quadratic character of a.

Since the notion of quadratic residues given above inherently depends on

working in the integers modulo an odd prime p, it is logical to restrict their

analysis to Zp, the integers modulo p. Additionally, as the null element, 0,

always satisfies the condition for being a quadratic residue modulo any prime

p, it is practical to further restrict the analysis of quadratic residues to the

cyclic group Z
∗
p = Zp \ {0}.

In order to determine the number of quadratic residues in Z
∗
p, the following

argument taken from [For96, p. 85] is used. First note that that map

sq: Z
∗
p −→ Z

∗
p, x 7−→ x2

is a group homomorphism since (xy)2 = x2y2 and that its image coincides

with the quadratic residues modulo p. Next note that

sq(x) = x2 ≡ 1⇒ (x− 1)(x + 1) ≡ 0⇒ x ≡ ±1 (mod p) (6.1)

since Zp is an integral domain and so Ker(sq) = {1, p − 1} is the kernel of

this map. Then, by the first isomorphism theorem of groups:

Z
∗
p / Ker(sq) ∼= Im(sq) ⊂ Z

∗
p

where Im(sq) is the image of the map. Thus the quadratic residues modulo

p form a proper subgroup of Z
∗
p, denoted QRp, of order |Z∗

p / Ker(sq)| =

(p − 1)/2. Therefore, precisely half of the elements in Z
∗
p are quadratic

residues and the other half are quadratic non-residues.

Remark. It is possible to enumerate all of the quadratic residues of Z
∗
p by

starting with x := 1 which is always a quadratic residue and then iterating

the relationship (x+1)2 ≡ x2 + (2x + 1) (mod p) until all (p−1)/2 quadratic

residues are found.

Example 6.1.1. In the multiplicative group Z
∗
19, the group of quadratic

residues is QR19 = {1, 4, 5, 6, 7, 9, 11, 16, 17}.

32

Recall that since Z
∗
p is a multiplicative cyclic group, it has a generator and

its elements can be represented by powers of this generator. The next two

results provide a connection between the quadratic character of an element

in Z
∗
p and this representation of the element as a power of a generator of Z

∗
p.

Lemma 6.1.1. Let p be an odd prime and let g be a generator of Z
∗
p. Then

an element a of Z
∗
p is a quadratic residue if and only if there exists an even

integer s in Zp−1 such that a ≡ gs (mod p).

Proof.

(⇒) If a is a quadratic residue it means there exists an element b in Z
∗
p

such that a ≡ b2 (mod p). Since b ≡ gr (mod p) for some integer r, it

follows that a ≡ b2 ≡ g2r (mod p). Then taking s := 2r (mod p − 1)

gives the desired integer.

(⇐) Let s := 2r be the even integer in Zp−1 such that a ≡ gs (mod p).

Then, it is clear that a ≡ gs ≡ (gr)2 (mod p) and so a is a quadratic

residue.

Corollary. Let p be an odd prime and let g be a generator of Z
∗
p. Then an

element a of Z
∗
p is a quadratic non-residue if and only if there exists an odd

integer s in Zp−1 such that a ≡ gs (mod p).

As a consequence of Lemma 6.1.1 and Corollary 6.1.1, the product of

two quadratic residues is again a quadratic residue as is the product of

two quadratic non-residues while the product of a quadratic residue and

a quadratic non-residue is a quadratic non-residue. This is also somewhat

evident from the fact that QRp is a subgroup of Z
∗
p. The next section presents

a compact notation for the quadratic character of an element in Z
∗
p.

6.1.2 The Legendre Symbol

Due to the importance of quadratic residues in number theory, the concept

is expressed by the following succinct notation.

33

Definition 6.1.2 (The Legendre symbol). Let p be an odd prime number

and let a be an integer such that p does not divide a, then the Legendre

symbol of a over p is defined as follows:

(
a

p

)
:=





1, if a is a quadratic residue modulo p

−1, if a is a quadratic non-residue modulo p

Remark. In the case where the prime p does divide the integer a, the Legendre

symbol is in fact defined to be 0. This paper, however, chooses to simplify

the definition as this case is neither needed nor encountered in the sections

which follow.

The next section covers an important result from number theory which

provides an explicit formula for evaluating the Legendre symbol.

6.1.3 Euler’s Criterion

This section introduces a critical result from Euler which allows for the

efficient computation of the Legendre symbol and thus determination of

quadratic character.

Theorem 6.1.2 (Euler’s Criterion). Let p be an odd prime and let a be an

integer such that p does not divide a, then

(
a

p

)
≡ a

p−1

2 (mod p) (6.2)

Proof.

1. Case a QR: If a is a QR, then there exists an integer b such that a ≡ b2

(mod p) and hence

a
p−1

2 ≡ bp−1 ≡ 1 ≡
(

a

p

)
(mod p)

by Fermat’s Little Theorem.

2. Case a QNR: To remove clutter, the modulus p is occasionally dropped.

Let g be a generator of Z
∗
p and let s be the odd integer such that a ≡ gs

by Corollary 6.1.1. Now let b := g
p−1

2 so that b2 ≡ gp−1 ≡ 1. Then, as

34

shown in Equation (6.1), b ≡ ±1, but since g has order p− 1, it follows

that b 6≡ 1. Thus, b ≡ −1 and hence

a
p−1

2 ≡ gs(p−1

2) ≡ bs ≡ (−1)s ≡ −1 ≡
(

a

p

)
(mod p)

as s is odd.

It is possible to utilize the method of exponentiation by squaring devel-

oped in Section 3.2 to quickly calculate the right-hand side of Equation (6.2).

Thus determining whether or not an element a of Z
∗
p is a quadratic residue

can be found in polynomial time. This fact will be used extensively in the

remainder of this chapter.

Remark. Though elegant in its simplicity, Euler’s Criterion is not the only

the method for evaluating the Legendre symbol. The Law of Quadratic

Reciprocity, together with its supplementary laws, in fact provides the fastest

means for finding the Legendre symbol (for more information, consult [For96,

ch. 11]). However, the goal of this section is only to demonstrate that the

Legendre symbol, and hence quadratic character, can be determined in poly-

nomial time.

6.1.4 Taking Square Roots in Z
∗
p

Having introduced the concept of quadratic residues modulo an odd prime

p, it is now natural to ask about taking the square roots of these elements

modulo p.

Definition 6.1.3 (Square Root). Let p be an odd prime and let a be an

element of Z
∗
p. If b is an integer such that b2 ≡ a (mod p), then b is called a

square root of a modulo p, denoted
√

a.

Given two elements x and y of Z
∗
p such that x2 ≡ y2 (mod p), it follows

that

0 ≡ x2 − y2 ≡ (x− y)(x + y)⇒ x ≡ ±y (mod p)

since Zp is an integral domain. Thus in Z
∗
p each quadratic residue a has

precisely two solutions for the unknown x in the equation x2 ≡ a (mod p).

Therefore, if b is a square root of a modulo p, then −b is the other square

root.

35

Lemma 6.1.3. Let g be a generator of Z
∗
p and let a be a quadratic residue

in Z
∗
p with a ≡ g2r (mod p) for the integer r in the range 0 ≤ r < p−1

2
as per

Lemma 6.1.1. Then x := gr (mod p) and y := gr+ p−1

2 (mod p) are the two

square roots of a modulo p.

Proof.

x2 ≡ g2r ≡ a ≡ g2r · 1 ≡ g2r · gp−1 ≡ g2r+(p−1) ≡ y2 (mod p)

Definition 6.1.4 (Principal and Non-Principal Square Roots). Keeping the

definitions from Lemma 6.1.3, x := gr (mod p) is called the principal square

root of a modulo p where as y := gr+ p−1

2 (mod p) is called the non-principal

square root of a modulo p. (Definitions taken from [BM86]).

The following corollary provides an incredibly useful relationship between

the principal square root of an element and its corresponding discrete log-

arithm. This connection is exploited extensively throughout the remaining

sections of this chapter.

Corollary (To Lemma 6.1.3). If x is the principal square root of a, then

logg(x) is the right bit shift of logg(a)

Unfortunately, Lemma 6.1.3 and Definition 6.1.4 require the previous

knowledge of the specific integer r in the exponent to be of any practical use.

Thus, utilizing these methods to find the square roots, would necessarily

mean calculating the discrete logarithm first! Luckily, there are probabilistic

polynomial time algorithms for calculating square roots in Z
∗
p, many of which

are presented in [MvOV96, ch. 3].

For the purposes of the paper, it suffices to know that square roots can

be found in probabilistic polynomial time and thus only the trivial case for

primes of the form p ≡ 3 (mod 4) is demonstrated now. Assuming that a is

a quadratic residue in Z
∗
p, then the two square roots of a modulo p are

x := a
p+1

4 and y := p− x

which can be calculated efficiently using Procedure 3.2.1. These are indeed

the two square roots since

y2 ≡ x2 ≡ a
p+1

2 ≡ a · a p−1

2 ≡ a (mod p)

36

where a
p−1

2 ≡ 1 (mod p) by Theorem 6.1.2 (Euler’s Criterion). Note that

this case occurs for half of all primes as a result of Dirichlet’s theorem on

primes in arithmetic progressions combined with the prime number theorem.

Remark (Warning). Despite being able to find the square roots in proba-

bilistic polynomial time, distinguishing the principal square root from the

non-principal square root is still quite difficult. As can be seen in the above

example, this is because these techniques work without determining infor-

mation about the exponents that is required to define the principal and

non-principal square roots.

6.2 The Idea of Bit Security

As stated at the beginning of this chapter, just because the discrete logarithm

is difficult to calculate, does not mean that each bit of the discrete logarithm

is also difficult. This section explores the security of individual bits in the

binary representation of the discrete logarithm.

Definition 6.2.1 (The ith Bit Discrete Logarithm Problem). Given an odd

prime p, a generator g of Z
∗
p, an element h of Z

∗
p, and an integer i in the

range 0 ≤ i < n := dlog2(p − 1)e, the ith bit discrete logarithm problem is

the problem of determining the ith bit in the binary representation of the

discrete logarithm logg(h). That is, if (rn−1 . . . r1r0)2 = r := logg(h) is the

discrete logarithm, then what is the value of ri. It is common in this setting

to refer to i as the bit index.

It should be clear that the difficulty of solving the discrete logarithm

problem guarantees that the ith bit discrete logarithm problem is also diffi-

cult for at least some values of i. To be exact, at least O(log2(n)) bits of

the discrete logarithm problem should be hard for almost all discrete loga-

rithm problems. Otherwise, the easy bits could be determined and then all

2O(log2(n)) = O(n) possible permutations of the hard bits could be tried in

polynomial time until the correct values were found.

The concept of a hard bit will be made more rigorous once the appropriate

mathematical machinery is developed in Section 6.4. Until then, Section 6.3

will focus on investigating which bits of the discrete logarithm problem are

easy bits.

37

6.3 The Easy Bits

The following definition makes precise what is meant by the notion of an

easy bit of the discrete logarithm problem.

Definition 6.3.1 (Easy Bit). Given an odd prime p, a generator g of Z
∗
p, an

element h of Z
∗
p, and a bit index i, if the ith bit discrete logarithm problem

of logg(h) can be solved in polynomial time, then i is called an easy bit.

In this section it is shown that the 0th bit is always easy. Additionally,

depending on the odd prime p, it is possible that the first k < n− 1 bits are

also easy where n := dlog2(p− 1)e.

6.3.1 The 0th Bit

Recall that given an odd prime p and a generator g of Z
∗
p, the Legendre

symbol can be used to determine if an element h of Z
∗
p is a quadratic residue in

polynomial time. If h is a quadratic residue, then by Lemma 6.1.1 there is an

integer r with 2r in Zp−1 such that h can be expressed as g2r (mod p). Hence,

the discrete logarithm is logg(h) = 2r and so its 0th bit is 0. Conversely, if

h is a quadratic non-residue, then the 0th bit of logg(h) is 1. Therefore,

the 0th bit discrete logarithm problem is always easy as demonstrated in

Procedure 6.3.1.

Procedure 6.3.1 Determining the 0th Bit : easy bit(p, g, h)

Require: p odd prime, g generator of Z
∗
p, and h element of Z

∗
p

Ensure: r0 is 0th bit of r := logg(h)

1: if
(

h
p

)
= 1 then /* h is a quadratic residue */

2: r0 ← 0

3: else

4: r0 ← 1

5: end if

6.3.2 Converting Quadratic Non-Residues

As a result of Subsection 6.3.1, if h ≡ gr (mod p) is a quadratic non-residue,

then r is odd and hence the 0th bit of r is 1. Thus h can be converted into

38

a quadratic residue by multiplying it by g−1, i.e. h := hg−1 ⇒ r := r − 1,

which effectively toggles the 0th bit of r from 1 to 0 making r even. This

process in summarized in Procedure 6.3.2 which always guarantees its output

is a quadratic residue, by converting its input as necessary.

Procedure 6.3.2 Converting Quadratic Non-Residues : ensure QR(p, g, h)

Require: p odd prime, g generator of Z
∗
p, and h element of Z

∗
p

Ensure: h is a quadratic residue.

1: if
(

h
p

)
= −1 then /* h is a quadratic non-residue */

2: h← h · g−1 (mod p) /* Convert h to a quadratic residue */

3: end if

Therefore converting a quadratic non-residue h into a quadratic residue

can be done quickly, a fact which is exploited throughout the rest of this

paper.

6.3.3 The Bit Border

Given an odd prime p, it can be written as p = 2sk + 1 where k is an odd

integer and s is an integer strictly greater than 0 (since p−1 is always even).

This representation is unique and can be found quickly by repeatedly dividing

p− 1 through by 2 until only k remains as demonstrated by Procedure 6.3.3.

Definition 6.3.2 (Bit Border). Let p be an odd prime number and let p =

2sk + 1 be the unique representation of p as described above with k an odd

integer. Then the integer s greater than 0 will be called the bit border of p.

Procedure 6.3.3 Determining the Bit Border : bit border(p)

Require: p odd prime

Ensure: s is the bit border of p, i.e. p = 2sk + 1 with k odd

1: s← 0

2: n← p− 1

3: while n is even do

4: n← n/2

5: s← s + 1

6: end while

39

Notice that since 2s divides p− 1, the first s− 1 bits of the binary repre-

sentation of p−1
2

are all 0s. Let h ≡ g2r (mod p) be a quadratic residue and

let x := gr (mod p) and y := gr+ p−1

2 (mod p) be the two square roots of h

by Lemma 6.1.3. Then logg(x) and logg(y) first differ in their (s − 1)th bit

since | logg(x) − logg(y)| = p−1
2

= 2s−1k. Thus both logg(x) and logg(y) can

be bit shifted down s− 1 times before their least significant bit differs. This

observation provides a means to partially extend the 0th bit idea.

6.3.4 Extending the 0th Bit Idea

As it was thoroughly detailed in Chapter 3, the discrete logarithm is the

inverse of the discrete exponential function. Thus, it may have occurred

to the observant reader that if the exponentiation by squaring technique

developed in Section 3.2 can be used to calculate expg(r) := gr (mod p),

then perhaps the inverse of this technique could be used to solve the discrete

logarithm.

Recall that calculating the principal square root of h ≡ gr (mod p) with

r in Zp−1 is equivalent to shifting the exponent r down one bit by Corol-

lary 6.1.4. Thus, repeatedly determining the 0th bit by applying Proce-

dure 6.3.1, converting the intermediate quadratic non-residues via Proce-

dure 6.3.2, and calculating the principal square root, would theoretically

unveil all of the bits of r. Of course the problem with this plan, as noted in

Remark 6.1.4, is that while it is possible to find both square roots, it is not

known which one is the principal one.

However, as a result of the analysis in Subsection 6.3.3, the first s square

roots of h will always have the same quadratic character. Therefore this

process will work for the first s iterations, regardless of which square root

is picked. This leads to Procedure 6.3.4 which finds the first s bits of the

discrete logarithm problem thus proving that the first s bits are easy.

40

Procedure 6.3.4 Determining the Easy Bits : easy bits(p, g, h)

Require: p odd prime, g generator of Z
∗
p, and h element of Z

∗
p

Ensure: rs−1, . . . , r0 are the s least significant bits of r := logg(h)

1: s← bit border(p) /* Procedure 6.3.3 */

2: for j ← 0 to s− 1 do

3: rj ← easy bit(p, g, h) /* Procedure 6.3.1 */

4: h← ensure QR(p, g, h) /* Procedure 6.3.2 */

5: h←
√

h /* Find either square root of h modulo p */

6: end for

6.4 The Hard Bits

The previous section showed that the first s bits of the discrete logarithm are

easy where s is the bit border. The main result of this section is that, of the

remaining bits, all bits but the most significant bit of the discrete logarithm

are hard (as defined below). In fact, the most significant bit is also hard as

proved in [BM86]. However, the proof technique developed in this section

does not handle this case and in the interest of keeping the proof elegant,

this one case is left out.

To begin, an informal definition of a hard bit is given to help the reader

understand the necessity for the definitions of oracles and reductions given

below. The basic idea is to assume that within in a certain cyclic group,

the ith bit discrete logarithm problem is, through some means, always known

with 100% accuracy for all elements of the group. If this information can

allow a polynomial time algorithm to solve the discrete logarithm problem

of any element in the group, then this bit is said to be hard. That is, if

assuming the ith bit discrete logarithm problem is easy implies that the dis-

crete logarithm problem is also easy, then the ith bit must be hard since the

discrete logarithm problem is hard.

Definition 6.4.1 (Oracle). Given an odd prime p, a generator g of Z
∗
p, an

element h of Z
∗
p, and a bit index i, it is common to refer to the ability to

query the state of the ith bit of logg(h) as having an oracle on the ith bit,

denoted Oraclei(p, g, h).

Remark. Note that oracles are a theoretical construct and generally do not

41

exists. Thus, to implement an oracle on the ith bit for testing purposes, one of

the methods from Chapter 5 is used to solve the discrete logarithm and then

only the ith bit is returned. Of course, it is necessary to choose the size of the

odd prime p in such a way that the queries to the oracle can be done quickly.

Therefore, when applicable, it is best to use the Index Calculus method of

Section 5.6 since it is the fastest overall due to the pre-computation stage.

However, having an oracle for some fixed bit of all elements is only part

of the solution, as some reduction method is still required to break a specific

discrete logarithm problem into multiple varied discrete logarithm problems

whose queries to the oracle can be recombined to recover the desired solution.

Definition 6.4.2 (Reduction). The process of reducing a given problem into

multiple varied problems whose solutions are then recombined to solve the

original problem is called a reduction.

Now that the necessary background for oracles and reductions has been

covered, the formal definition of a hard bit is stated.

Definition 6.4.3 (Hard Bit). Given an odd prime p, a generator g of Z
∗
p,

an element h of Z
∗
p, and a bit index i, if knowing Oraclei(h̃) for all elements

h̃ of Z
∗
p allows a polynomial time algorithm to determine logg(h), then i is

called a hard bit.

Since all bits below the bit border are easy as shown in Section 6.3, the

analysis of hard bits is restricted to the bits on or above the bit border,

except the most significant bit as detailed in the beginning of this section. In

the next few sections, two reduction procedures are covered which together

allow an oracle on the ith bit to completely determine any discrete logarithm

problem in the group.

For the remainder of this section, always assume that p is an odd prime,

that g is a generator of Z
∗
p, that h is an element of Z

∗
p, that s is the bit border

of p, that n := dlog2(p − 1)e is the maximum bit length for elements of Z
∗
p,

that i is a fixed bit index in the range s ≤ i < n−1 with an associated oracle,

and that r := logg(h) is the solution to the discrete logarithm problem.

6.4.1 A Useful Metaphor

It may aid the reader throughout the chapter to visualize the following

metaphor for the discrete logarithm, the oracles, and the reductions. The

42

fundamental approach of this chapter is to assume there exists an oracle on

the ith bit of the binary representation of the discrete logarithm r := logg(h)

and then attempt to use this information to reveal the other bits of r by

using reductions. So, view the binary representation of r as a long string a

paper consisting of n cells each containing either 0 or 1 which, while fixed,

cannot be seen.

i

r := rn−1 · · · ri · · · r1 r0

Figure 6.1: Metaphorical representation of r := logg(h)

Then, the oracle on the ith bit acts as a fixed window into the ith cell,

exactly one cell wide, which allows this cell to be viewed. Now although the

window cannot be moved, it is possible to reveal the cells above and below

the window by sliding the paper to the right or to the left. This is achieved

by manipulating the paper via the reductions.

6.4.2 Wrap-Around in the Exponent

Recall that for all prime p and for all elements a of Z
∗
p, Fermat’s Little

Theorem states that ap−1 ≡ 1 (mod p) always holds. Now note that r :=

logg(h) is an element of Zp−1 and let t̃ := r + c with c a positive integer.

Then it is possible that p − 1 ≤ t̃ in which case t̃ = (p − 1) · k + t for an

integer k > 0 and an integer t in the range 0 ≤ t < p− 1. Thus,

gt̃ ≡ g(p−1)·k+t ≡ (gp−1)k · gt ≡ 1k · gt ≡ gt (mod p)

by Fermat’s Little Theorem since g is an element of Z
∗
p.

Definition 6.4.4 (Wrap-Around). When the situation described above oc-

curs, it is called a wrap-around in the exponent of t̃ to t.

Since p and r are fixed for a given problem instance, the likelihood of

a wrap-around occurring depends exclusively on whether p − 1 − r ≤ c.

Unfortunately, r is the unknown solution to the discrete logarithm, so in

practice, wrap-around is a rather troublesome issue to predict. Normally,

43

this situation arises in the context of multiplying h by another element gc

which indirectly manipulates the exponents causing the wrap-around

h · gc ≡ gr · gc ≡ gr+c ≡ gt̃ ≡ gt (mod p)

This can be a serious problem when a method depends on the inequality

r < r+c = t̃ holding in the exponent. To make matters worse is the fact that

it is not possible to detect when the wrap-around occurs since that would

require solving the discrete logarithm. Even when possessing an oracle on the

ith bit, it is not always possible to detect whether a wrap-around occurred

since it may occur it such a manner that the ith bit does not in fact change

its value.

Therefore, in the proofs of the reductions which follow in Subsection 6.4.3

and in Subsection 6.4.5, it is assumed the no wrap-arounds take place. The

consequences of this assumption are addressed in Subsection 6.5.2.

6.4.3 The Right Reduction Technique

This subsection introduces a novel reduction technique inspired by the work

in [O’C90] that takes advantage of the properties of binary addition to allow

an oracle on the ith bit to discover all bits below i. The technique is based

on the notion of bit propagation which was proved in Lemma 2.3.1 and it

proceeds as follows.

If the oracle reveals the ith bit of r to be 1, then it can be cleared by

subtracting 2i from r, which is achieved by multiplying h by g−2i

. Otherwise,

if the ith bit of r is 0, then leave h as it is. Now, let j = i− 1 be a second bit

index and note that r satisfies the conditions of the bit propagation lemma

for the case where i = j +1. Thus, adding 2j to r, call it r̃ := r+2j, which is

achieved by multiplying h by g2j

, will cause the unknown jth bit to propagate

into the ith bit where the oracle can reveal its value.

If the oracle reveals the ith bit of r̃ to be 0, then the jth bit of r is 0 and

r̃ satisfies the conditions for the bit propagation lemma. Thus, the bit index

j may be decremented and the process repeated using r̃. Otherwise, if the

oracle reveals the ith bit of r̃ to be 1, then the jth bit of r is 1 and r already

satisfies the conditions for the bit propagation lemma. Thus, the bit index j

may be decremented and the process repeated using r.

44

Note that since the technique always clears the ith bit before beginning,

it is not possible for the jth bit to propagate above the ith bit. Hence,

this process never alters the bits above the ith bit. Therefore, through this

careful manipulation of h ≡ gr (mod p), all of the bits below the bit index i

may be determined, when given an oracle on the ith bit, as demonstrated in

Procedure 6.4.1.

Procedure 6.4.1 The Right Reduction : right reduction(p, g, h, i)

Require: p odd prime, g generator of Z
∗
p, h element of Z

∗
p, and i bit index

Ensure: ri, . . . , rs are the bits of r := logg(h) between the sth bit and the

ith bit

1: s← bit border(p) /* Procedure 6.3.3 */

2: for j ← i to s by − 1 do

3: if Oraclei(p, g, h) = 1 then /* If the jth bit is 1 */

4: rj ← 1

5: h← h · g−2j

(mod p) /* Reset h to the right form */

6: else

7: rj ← 0 /* Otherwise h is the right form */

8: end if

9: h← h · g2j−1

(mod p) /* Apply Bit Propagation Lemma 2.3.1 */

10: end for

6.4.4 Distinguishing Square Roots

An important consequence of the right reduction technique developed in Sub-

section 6.4.3, is that possessing an oracle on the ith bit always allows the sth

bit of logg(h) to be determined. Next note, as explained in Subsection 6.3.3,

that if h is a quadratic residue with principal square root x and non-principal

square root y, then logg(x) and logg(y) first differ in their (s−1)th bit. These

two observations are connected by the fact that the (s − 1)th bit of logg(x)

is in fact the sth bit of logg(h) as per Corollary 6.1.4. Therefore, comparing

the sth bit of logg(h) to the (s− 1)th bit of both square roots of h allows the

principal square root to be identified.

Furthermore, the (s−1)th bit of both logg(x) and logg(y) can be calculated

without an oracle since it is an easy bit. Hence, distinguishing the principal

square root can be accomplished in polynomial time, provided the sth bit of

45

logg(h) is known. This insight leads to Procedure 6.4.2.

Procedure 6.4.2 Distinguishing Square Roots : principal root(p, g, h, b)

Require: p odd prime, g generator of Z
∗
p, h quadratic residue in Z

∗
p, and b

the sth bit of logg(h) with s the bit border

Ensure: x is the principal square root of h

1: s← bit border(p) /* Procedure 6.3.3 */

2: x←
√

h /* Find either square root of h modulo p */

3: rs−1, . . . , r0 ← easy bits(p, g, x) /* Procedure 6.3.4 */

4: if b 6= rs−1 then /* If x is the non-principal square root */

5: x← p− x /* Swap x for the principal square root */

6: end if

6.4.5 The Left Reduction Technique

It remains to be shown how an oracle on the ith bit can determine the (i+1)th

bit up to the (n − 1)th bit. Recall that in Subsection 6.3.4, a method was

developed to calculate the s least significant bits of r := logg(h) by taking

advantage of the relationship between principal square roots and right bit

shifts as given in Corollary 6.1.4. The method was however restricted to the

bits below the bit border since finding the bits on or above the bit border

required a means to distinguish the square roots.

Luckily, as just proved in Subsection 6.4.4, such a means does exists when

an oracle is present. Thus the same approach that worked for finding the

easy bits below the bit border can, with slight modification, also find the bits

above the bit border. Of course, in the process of using the right reduction

technique to obtain the sth bit of logg(h), needed for selecting the principal

square root, the hard bits between the sth bit and the ith bit are determined

as well. Hence, the left reduction technique is only needed to reveal the bits

above the ith bit.

As this technique is based on Procedure 6.3.4, its form is almost identical.

Each iteration of the procedure ensures x is a quadratic residue and then

replaces x with its principal square root. This effectively performs a right

bit shift of the exponent which moves the (i + 1)th bit into the ith bit where

the oracle may be used to reveal its value. Thus, after j iterations, the sth

bit of logg(x) is in fact the (s+ j)th bit of r := logg(h). Hence, the procedure

46

requires previous knowledge of the sth bit up to the ith bit before starting

in order distinguish the first s principal square roots, after which point, the

process is self sustaining.

This analysis leads to Procedure 6.4.3 which, when given an oracle on the

ith bit, reveals all of the bits above ith bit.

Procedure 6.4.3 The Left Reduction : left reduction(p, g, h, i)

Require: p odd prime, g generator of Z
∗
p, h element of Z

∗
p, and i bit index

Ensure: rn−1, . . . , ri+1 are the bits of r := logg(h) above the ith bit

1: s← bit border(p) /* Procedure 6.3.3 */

2: n← dlog2(p− 1)e /* Calculate the binary length of p− 1 */

3: x← h

4: ri, . . . , rs ← right reduction(p, g, h, i) /* Procedure 6.4.1 */

5: for j ← i + 1 to n− 1 do

6: x← ensure QR(p, g, x) /* Procedure 6.3.2 */

7: x← principal root(p, g, x, rs+j−(i+1)) /* Procedure 6.4.2 */

8: rj ← Oraclei(p, g, x)

9: end for

6.5 Putting It All Together

Section 6.3 developed the concept of the bit border and then showed why all

bits of the discrete logarithm below the bit border are easy. Section 6.4 devel-

oped two reduction techniques that could be used together with an oracle on

a single bit index i to reveal all the other bits of the discrete logarithm above

and below i. This showed that all bits of the discrete logarithm, other than

the most significant bit, are hard. The next two subsections explain how to

use these results to solve an arbitrary discrete logarithm problem given an

oracle for almost any bit and offer fixes for problems not handled earlier.

6.5.1 Combining the Reductions

Many procedures were developed over the course of this chapter in prepa-

ration for the main result - a procedure to determine the discrete logarithm

problem given an oracle on almost any bit index i. Notable among these

were:

47

1. Procedure 6.3.3 was relevant in defining the border between the easy

bits and the hard bits of the discrete logarithm.

2. Procedure 6.3.4 was created to quickly determine the easy bits of the

discrete logarithm.

3. Procedure 6.4.1 was designed to reveal all of the bits of the discrete

logarithm on or below i for a given bit index i with an associated

oracle.

4. Procedure 6.4.3 was made to be used in conjunction with the previous

procedure to unveil the bits of the discrete logarithm above i.

Together, these four procedures can be combined to determine all of the bits

of the discrete logarithm as demonstrated in Procedure 6.5.1.

Procedure 6.5.1 Combining the Reductions : combine(p, g, h, i)

Require: p odd prime, g generator of Z
∗
p, h element of Z

∗
p, and i bit index

Ensure: r = (rn−1 . . . r1r0)2 = logg(h)

1: s← bit border(p) /* Procedure 6.3.3 */

2: n← dlog2(p− 1)e /* Calculate the binary length of p− 1 */

3: rs−1, . . . , r0 ← easy bits(p, g, h) /* Procedure 6.3.4 */

4: ri, . . . , rs ← right reduction(p, g, h, i) /* Procedure 6.4.1 */

5: rn−1, . . . , rs+1 ← left reduction(p, g, h, i) /* Procedure 6.4.3 */

Note that it is possible to implement this procedure so that the number

of queries to the oracle required to recover all of the bits of the discrete

logarithm is optimal. In other words, for each bit on or above the bit border,

the oracle only needs to be queried once to determine the bit. This is easy to

see since the left reduction technique utilizes the right reduction technique,

internally, exactly once and hence it can be modified to simply return all of

the bits on or above the bit border.

6.5.2 Handling Wrap-Around

Despite appearing to be the main result, Procedure 6.5.1 does not always

yield correct solutions to the discrete logarithm. This is due to fact that

wrap-arounds, covered in Subsection 6.4.2, were incorrectly assumed not to

48

occur during the reductions. Conveniently, the following lemmas provide a

fix to this problem.

Lemma 6.5.1. If combine(p, g, h, i) yields an incorrect solution to the dis-

crete logarithm, then a wrap-around must have occurred.

Proof. The only assumption made throughout the entire chapter was that

wrap-arounds did not occur. Therefore, if any results are incorrect, the error

stems from this single, faulty assumption.

Lemma 6.5.2. If a wrap-around occurred, then it must have occurred in

right reduction(p, g, h, i).

Proof. Note that proofs which manipulated the exponent by taking prin-

cipal square roots, could not have caused a wrap-around since they divide

the exponent by 2 making it always smaller. Furthermore, the proof for con-

verting quadratic non-residues only subtracts 1 from the exponent when it is

guaranteed to be possible and hence it could not have caused a wrap-around.

Therefore, the only proof remaining which manipulated the exponents was

for the right reduction technique which does in fact explicitly add powers of

two to the exponent.

Lemma 6.5.3. If right reduction(p, g, h, i) causes a wrap-around, then the

(n− 1)th bit of r := logg(h) must have been 1, where n := dlog2(p− 1)e.

Proof.

Let l be the largest integer such that 2l < p − 1. Now, assume for a

contradiction that there was a wrap-around and that the (n − 1)th bit of r

was 0. Note that regardless of r, the right reduction technique can never

alter the (n − 1)th bit. This is because the oracle is restricted to never be

on the (n − 1)th bit and, as explained in Subsection 6.4.3, the technique

does not alter the bits above the oracle. Thus, no matter how the technique

manipulates r, the (n−1)th bit of r remains 0 and hence r always remains less

than 2l < p − 1. Therefore, right reduction(p, g, h, i) could not have caused

r to wrap-around.

The proof of Lemma 6.5.3 also explains why the right reduction technique

can never work with an oracle on the most significant bit.

49

Corollary. The procedure right reduction(p, g, h, i) causes a wrap-around for

less than half of the elements h in Z
∗
p.

Proof. Note that p−1
2
≤ 2l < p − 1 otherwise 2l+1 < p − 1 which is a con-

tradiction to the maximality of l. Furthermore, note that if r < 2l, then the

(n− 1)th bit of the exponent r is 0. Together, these imply that the (n− 1)th

bit is 0 for more than half of the exponents in Zp−1. Now since the discrete

logarithm is bijective, each element h in Z
∗
p corresponds to precisely one ex-

ponent r in Zp−1. Thus, by Lemma 6.5.3, for more than half of the elements

h in Z
∗
p, right reduction(p, g, h, i) does not cause a wrap-around.

Finally, these lemmas can be combined into the following theorem.

Theorem 6.5.4. If combine(p, g, h, i) yields an incorrect solution to the dis-

crete logarithm, then the (n− 1)th bit of r := logg(h) is 1.

Proof. This theorem follows directly from the previous three lemmas.

Corollary. If the (n − 1)th bit of r := logg(h) is 0, then combine(p, g, h, i)

yields a correct solution to the discrete logarithm.

These last two results provide instructions on how to fix the problems

caused by the erroneous wrap-around assumption. First, use combine(p, g, h, i)

to find r := logg(h). Utilizing the exponentiation by squaring method, it is

possible to quickly verify whether or not r is indeed the correct solution by

checking that gr ≡ h (mod p). If it is correct, then simply return r.

Otherwise, if the result is incorrect, then the (n − 1)th bit of r must be

1 by Theorem 6.5.4. Thus, clear this bit via h̃ := h · g−2n−1

. Then find

r̃ := logg(h̃) using combine(p, g, h̃, i) which is guaranteed to be correct by

Corollary 6.5.2. Last, set the (n − 1)th bit of r̃ back to 1 via r := r̃ + 2n−1

and return r. This idea is implemented in Procedure 6.5.2.

50

Procedure 6.5.2 Determining the Discrete Logarithm : dlog(p, g, h, i)

Require: p odd prime, g generator of Z
∗
p, h element of Z

∗
p, and i bit index

Ensure: r = (rn−1 . . . r1r0)2 = logg(h)

1: n← dlog2(p− 1)e /* Calculate the binary length of p− 1 */

2: r ← combine(p, g, h, i) /* Procedure 6.5.1 */

3: if h 6≡ gr (mod p) then /* r is incorrect */

4: h← h · g−2n−1

/* Clear the (n− 1)th bit to prevent wrap around */

5: r ← combine(p, g, h, i) /* Procedure 6.5.1 */

6: rn−1 ← 1 /* Set the (n− 1)th bit back to 1 */

7: end if

The reader may wish to peruse the Source Code Listing in Appendix A

for implementations of the proofs presented throughout the chapter in order

to gain more appreciation for why and how they work.

51

Chapter 7

Conclusions

The intent of this paper was to provide a thorough investigation into the dis-

crete logarithm problem, its properties, its applications, methods for solving

it, and most of all, its individual bit security. In particular, the focus was

on producing the most efficient reduction techniques possible in Section 6.4

based on the assumption of a perfect oracle. This research culminated at the

end of Chapter 6 with an elegant and extremely efficient proof that, in Z
∗
p,

all bits of the discrete logarithm on or above the bit border are individually

hard, with the exception of the most significant bit.

Under the assumption that the oracles were perfect, the right reduction

and left reduction techniques were shown to be optimal in the sense that

the number of queries to the oracle was exactly equal to the number of

bits revealed. However, due to the issue of wrap-around in the exponent

which occurs for less than half the elements, it was sometimes necessary to

perform the reductions a second time. This implies that the approach used

to determine the discrete logarithm requires, on average, at most 1.5 times

as many oracle queries as the number of bits revealed.

Although perfect oracles are an invaluable tool for the analysis of theoret-

ical computations, they are often unavailable for many problems in practice.

Thus imperfect oracles, which only answer correctly for over half of the in-

puts, can be seen as a closer approximation to the reality of the situation.

Many papers such as [LW83] and [Per85] first present procedures for de-

termining the discrete logarithm using perfect oracles and later adapt their

procedures to use imperfect oracles. These methods tend to take a majority

vote of the oracle across multiple queries with known relationships that can

52

be exploited in polynomial time to ensure a correct response with a negligible

probability of error.

On the other hand, the proofs developed in these papers are not con-

cerned with the efficiency of their implementations and hence are organized

around different approaches which make them somewhat difficult to adapt

completely. However, the reductions given in this paper can utilize a similar

randomized method to that of [Per85], but restricted to oracles on the sth bit

up to the (s+ l)th bit where s is the bit border of p and l = c · log2 log2(p−1)

for a constant c > 0. The trade-off between the accuracy of the oracles and

the efficiency of the corresponding reduction techniques would be a topic that

merits closer attention in the future.

53

Appendix A

Source Code Listing

The source code presented in this listing is comprised of the implementations

for the results of Section 6.3, of Section 6.4, and of Section 6.5. It is written

in the programming language Aribas from Prof. Dr. Otto Forster which can

be found on the internet at:

http://www.mathematik.uni-muenchen.de/∼forster/sw/aribas.html

Included with this thesis is a CD-ROM containing the files necessary to run

Aribas as well as this source code listing and the additional files needed by

it.

(**

*

* Filename: dlog_using_oracle.ari

* Author: Richard McKnight, rmcknigh@cs.hmc.edu

*

* Created: Wed 7 Mar 2007 19:13:35 CET

* Revised: Fri 23 Mar 2007 18:20:49 CET

*

* Description: Implements the proofs presented in my Masters

* Thesis:

*

* Individual Bit Security of the Discrete Logarithm:

* Theory and Implementation Using Oracles

*

* Copyright: This code released under the GNU GPL.

*

54

http://www.mathematik.uni-muenchen.de/~forster/sw/aribas.html

**)

(*

** Load the necessary functions for solving

** the discrete logarithm via index calculus.

*)

load("index");

(*

** The following assumptions are made for all functions:

** - p is an odd prime number

** - g is a generator of (Z/p)*

** - h is an integer in the range 0 < h < p

*)

(*

** Calculates the border between the easy bits

** and the hard bits.

*)

function bit_border(p: integer): integer;

var

s, n: integer;

begin

s := 0;

n := p-1;

while even(n) do

n := bit_shift(n, -1);

inc(s);

end;

return s;

end;

(*

** Calculates all easy bits of the discrete logarithm.

*)

function easy_bits(p, g, h: integer): integer;

55

var

s, g_inv, r, j: integer;

begin

s := bit_border(p);

g_inv := mod_inverse(g, p);

r := 0;

for j := 0 to s-1 do

if jacobi(h, p) = -1 then

h := h*g_inv mod p;

r := bit_set(r, j);

end;

h := gfp_sqrt(p, h);

end;

return r;

end;

(*

** Checks that the given bit index is valid;

** i.e. Above the border of the easy bits,

** but not the most significant bit.

*)

function in_range(p, i: integer): boolean;

var

s, n: integer;

begin

s := bit_border(p);

n := bit_length(p-1);

if s <= i and i < n then

return true;

end;

writeln();

write("Bit index i=", i, " not in range ");

writeln("[", s, ", ", n-1, "]");

56

return false;

end;

(*

** Implements an i^{th} Bit Oracle for

** the discrete logarithm.

*)

function oracle(p, g, h, i: integer): integer;

begin

if in_range(p, i) then

return bit_test(dlog(p, g, h), i);

end;

end;

(*

** Uses the i^{th} Bit Oracle to find all hard bits

** less than or equal to i.

*)

function right_reduction(p, g, h, i: integer): integer;

var

s, g_inv, r, j: integer;

begin

if not in_range(p, i) then

return;

end;

s := bit_border(p);

g_inv := mod_inverse(g, p);

r := easy_bits(p, g, h);

for j := i to s by -1 do

if oracle(p, g, h, i) = 1 then

h := h*(g_inv**(2**j mod (p-1)) mod p) mod p;

r := bit_set(r, j);

end;

h := h*(g**((2**(j-1)) mod (p-1)) mod p) mod p;

end;

57

return r;

end;

(*

** Uses right_reduction() and easy_bits_msb() to find

** all hard bits greater than i. Assumes 0 < h < p.

*)

function left_reduction(p, g, h, i: integer): integer;

var

s, n, g_inv, r, j: integer;

begin

s := bit_border(p);

n := bit_length(p-1);

g_inv := mod_inverse(g, p);

r := right_reduction(p, g, h, i);

for j := i+1 to n-1 do

if jacobi(h, p) = -1 then

h := h*g_inv mod p

end;

h := gfp_sqrt(p, h);

if bit_test(r, s+j-(i+1)) /=

bit_test(easy_bits(p, g, h), s-1) then

h := p-h;

end;

if oracle(p, g, h, i) = 1 then

r := bit_set(r, j);

end;

end;

return r;

end;

(*

58

** Uses left_reduction() to find the discrete logarithm.

*)

function dlog_using_oracle(p, g, h, i: integer): boolean;

var

r, n, g_inv: integer;

begin

if not in_range(p, i) then

return;

end;

r := left_reduction(p, g, h, i);

if g**(r mod (p-1)) mod p = h then

return r;

else

n := bit_length(p-1);

g_inv := mod_inverse(g, p);

h := h*(g_inv**(2**(n-1) mod (p-1)) mod p) mod p;

r := left_reduction(p, g, h, i);

r := bit_set(r, n-1);

end;

end;

59

References

[BM86] M. Blum and S. Micali. How to generate cryptographically strong

sequences of pseudo-random bits. SIAM Journal on Computing,

13:850–864, 1986.

[Bon98] Dan Boneh. The decision diffie-hellman problem. In Lecture

Notes in Computer Science, volume 1423, pages 48–63. Third

Algorithmic Number Theory Symposium, Springer-Verlag, 1998.

[Bur06] U.S. Census Bureau. 2004 e-commerce multi-sector report, 2006.

http://www.census.gov/estats/.

[Coh96] Henri Cohen. A Course in Computational Algebraic Number The-

ory. Springer-Verlag, 1996. ISBN 0-387-55640-0.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22:644–654, 1976.

[ElG85] T. ElGamal. A public-key cryptosystem and a signature scheme

based on discrete logarithms. IEEE Transactions on Information

Theory, 31:469–472, 1985.

[For96] Otto Forster. Algorithmische Zahlentheorie. Vieweg-Verlag, 1996.

ISBN 3-528-06580-X.

[Kob87] Neal Koblitz. A Course in Number Theory and Cryptography.

Number 114 in Graduate Texts in Mathematics. Springer-Verlag,

1987.

[LW83] Douglas L. Long and Avi Wigderson. How discreet is the discrete

log? In STOC ’83: Proceedings of the fifteenth annual ACM

60

http://www.census.gov/estats/

symposium on Theory of computing, pages 413–420, New York,

NY, USA, 1983. ACM Press.

[MvOV96] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

[Nid90] H. Niderreiter. A short proof for explicit formulas for the discrete

logarithms in finite fields. Applicable Algebra in Eng., Comm.,

and Comp., 1:55–57, 1990.

[O’C90] Luke O’Connor. Every bit of the discrete logarithm is either hard

or easy. In 5th Annual University at Buffalo Graduate Conference,

pages 23–30, 1990.

[Odl00] Andrew M. Odlyzko. Discrete logarithms: The past and the

future. Des. Codes Cryptography, 19(2/3):129–145, 2000.

[Per85] René Peralta. Simultaneous security of bits in the discrete log.

In EUROCRYPT, pages 62–72, 1985.

[PH78] S. C. Pohlig and M. E. Hellman. An improved algorithm for com-

puting logarithms over GF(p) and its cryptographic significance.

IEEE Trans. Inform. Theory, 24(1):106–110, 1978.

[Pol78] J. Pollard. Monte carlo methods for index computation (mod p).

Mathematics of Computation, 32(143):918–924, 1978.

[Sha49] C. E. Shannon. Communication theory of secrecy systems. Bell

Sys. Tech. J., 28:657–715, 1949.

[Sha71] D. Shanks. Class number, a theory of factorization and genera.

Proc. Symp. Pure Math., 20:415–440, 1971.

[Sti02] Douglas R. Stinson. Cryptography: Theory and Practice. CRC

Press, 2nd edition, 2002.

61

	1 Introduction
	2 A Brief Review of Necessary Topics
	2.1 Nomenclature
	2.2 Group Theory and Finite Fields
	2.3 Binary Representation
	2.4 The Basics of Security by Encryption

	3 Introduction to the Discrete Logarithm
	3.1 Discrete Exponentiation
	3.2 Exponentiation by Squaring
	3.3 The Discrete Logarithm
	3.4 Properties of the Discrete Logarithm

	4 Applications of the Discrete Logarithm
	4.1 The Diffie-Hellman Key Exchange
	4.2 The ElGamal Encryption Scheme

	5 Determining the Discrete Logarithm
	5.1 Trial Multiplication
	5.2 Explicit Form
	5.3 Shanks' Baby-Step Giant-Step Method
	5.4 Pollard's Rho Method
	5.5 The Pohlig-Hellman Method
	5.6 The Index Calculus Method

	6 Individual Bit Security
	6.1 Survey of Required Concepts
	6.1.1 Quadratic Residues
	6.1.2 The Legendre Symbol
	6.1.3 Euler's Criterion
	6.1.4 Taking Square Roots in Zp*

	6.2 The Idea of Bit Security
	6.3 The Easy Bits
	6.3.1 The 0
	6.3.2 Converting Quadratic Non-Residues
	6.3.3 The Bit Border
	6.3.4 Extending the 0 Idea

	6.4 The Hard Bits
	6.4.1 A Useful Metaphor
	6.4.2 Wrap-Around in the Exponent
	6.4.3 The Right Reduction Technique
	6.4.4 Distinguishing Square Roots
	6.4.5 The Left Reduction Technique

	6.5 Putting It All Together
	6.5.1 Combining the Reductions
	6.5.2 Handling Wrap-Around

	7 Conclusions
	A Source Code Listing
	References

